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Green’s functions for a source in a boundary
layer: direct waves, channelled waves and

diffracted waves
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Green’s functions for a source embedded in an isothermal transversely sheared
boundary layer are compared with direct numerical simulation (DNS) at various
frequencies and free-stream Mach numbers. The procedures developed for a mixing
layer in Part 1 (Suzuki & Lele 2003) are applied to derive the low- and high-frequency
Green’s functions for direct waves, i.e. the third-order convective wave equation
is solved using asymptotic matching. In addition, channelled waves propagating
downstream along the wall are analysed using the normal mode decomposition. By
introducing an adjoint operator of the convective wave equation with a mixed-type
boundary condition on the wall, the corresponding Hilbert space is defined and
eigenfunctions of channelled waves are normalized. Furthermore, diffracted waves
in the shadow zone are formulated in the high-frequency limit. These theoretical
predictions are compared with numerical simulations in two dimensions: DNS are
performed based on the full Navier–Stokes equations (the ratios between the acoustic
wavelength and the boundary layer thickness are λ/δBL = 4.0, 1.0, and 0.25 at a free-
stream Mach number of M∞ = 0.8; and λ/δBL = 1.0 at M∞ = 0.3 and 1.2). The DNS
results generally agree with the theories: the pressure amplitudes of direct waves
and diffracted waves follow the high-frequency limit with a reasonable degree of
accuracy in the intermediate- and high-frequency cases (λ/δBL = 1.0 and 0.25). The
DNS results for channelled waves also agree with the theoretical predictions fairly
well. In addition, the acoustic impedance on the wall under a strongly sheared viscous
boundary layer is derived asymptotically based on the modal analysis.

1. Introduction
When sound is generated in a region in which the mean velocity is strongly sheared,

its radiation pattern becomes highly directional due to refraction (see figure 1).
Assuming the mean flow to be isothermal and purely transversely sheared in two
dimensions, two types of flow geometries are studied in this series of papers. In
Part 1 (Suzuki & Lele 2003), sound from a mixing layer is analysed, while in this
paper sound from a boundary layer is analysed. When the source is embedded in a
boundary layer with a moderate free-stream Mach number, the interaction with a
wall causes various complex phenomena as well as simple refraction. Such a situation
can arise in many practical aero-acoustic problems, for example the noise from a
turbulent boundary layer at a finite Mach number on an airfoil (Ffowcs Williams &

† Present address: California Institute of Technology, Division of Engineering and Applied
Science, Pasadena, CA 91125, USA.



130 T. Suzuki and S. K. Lele

Direct waves

Channelled waves

Source

Solid Wall

Velocity profile

Shadow zone
(diffracted waves)

L
im

iti
ng

 r
ay

Figure 1. Schematic of ray trajectories from a point source in a boundary layer.

Hall 1970) or in a high-speed channel flow (Coleman, Kim, & Moser 1995; Goldstein
& Leib 2000), the noise from a jet impinging on a flat plate (Powell 1991; Shen &
Meecham 1993) or from jet–flap interaction (Ramakrishnan 1980), and so on.

In previous theoretical studies, the noise levels have been estimated assuming
low free-stream Mach numbers (Curle 1955; Powell 1960; Howe 1979); accordingly,
Lighthill’s acoustic analogy (Lighthill 1952) has been extensively used. However, as
the Mach number increases, refraction due to the shear flow in combination with
the wall boundary needs to be taken into account. Strong refraction results in highly
directional radiation patterns (see figure 1); in particular, at high-frequencies intensity
becomes peaked at the ‘critical angle’. Beyond this angle, there exists a region upstream
of the source which direct waves cannot reach, referred to as a ‘shadow zone’. Instead,
diffracted waves occupy the shadow zone. On the other hand, downstream of the
source, a large amount of acoustic energy trapped within a boundary layer propagates
along the wall due to reflection as well as refraction (called a ‘channelled wave’ in
this paper). Moreover, both diffracted waves and channelled waves interact with the
non-slip wall on which the acoustic impedance could be non-zero. An understanding
of all these phenomena is essential in analysing the sound from a boundary layer with
a finite free-stream Mach number. However, these aspects have not been specifically
studied in previous works.

One classical approach to understanding such a sound radiation problem is to
seek fundamental acoustic solutions. This type of methodology, extensively explored
in the 1960s and 1970s, can be now re-examined with the help of ‘computational
aero-acoustics’ (CAA). Thus, the objective of this paper is to investigate Green’s
functions for a source in a boundary layer with a finite free-stream Mach number
by comparing theoretical predictions with numerical simulations. This paper studies
various wave phenomena relevant to a stationary point source, namely the sound
radiation patterns of direct waves, channelled waves along the downstream wall,
diffracted waves in the shadow zone, and related issues of the viscous wall boundary
conditions.

As seen in studies of a mixing layer (such as Goldstein 1978, 1982), refraction must
be taken into account when one estimates the sound level from a source embedded
in a finite-Mach-number shear layer. Using the method studied in Part 1 (Suzuki
& Lele 2003), asymptotic formulas for the radiation pattern of direct waves can be
derived for a boundary layer. In the low-frequency limit, a vortex sheet model can
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be applied (refer to previous works by Beckemeyer 1974 and Ffowcs Williams &
Purshouse 1981, particularly for a boundary layer), while in the high-frequency limit
the approach taken by Goldstein (1982) (based on the mathematical method derived
by Avila & Keller 1963) can be applied (similar approaches were studied by Balsa 1976,
Durbin 1983, and others). In both cases the third-order convective wave equation
(Pridmore-Brown 1958; Lilley 1974) is solved using asymptotic matching, and the
far-field solutions can be explicitly formulated in two and three dimensions using the
stationary phase method. From these asymptotic formulas, the radiation pattern is
shown to be highly directional as the free-stream Mach number increases; namely
the rays are concentrated near the critical angle, at which the amplitude becomes
peaked. In addition, it is predicted that directional patterns are quite different for the
low- and high-frequency limits. All such information is entirely missing in the studies
based on a free-space Green’s function.

In addition to the peak near the critical angle, large-amplitude waves propagating
along the wall are observed downstream. When the initial grazing angle of a ray is
lower than a certain threshold value, this ray cannot penetrate the free stream due
to strong refraction; as a result, it propagates downstream, bouncing between the
turning points and the solid wall. Accordingly, caustics are formed, in which multiple
rays focus, and a considerable amount of energy is trapped within the boundary
layer downstream. These strong waves may have a significant impact on the interior
noise of aircraft (Kriegsmann & Reiss 1983; Abrahams & Kriegsmann 1994). Similar
phenomena can be observed in ocean acoustics, referred to as ‘channelling’ or a
‘wave guide’, in which rays are trapped between the upper surface and the turning
points created by the temperature gradient. This phenomenon has been exhaustively
investigated using two approaches: geometrical acoustics to statistically estimate the
amplitude using ray tube theory (Brekhovskikh & Lysanov 1982), and the normal
mode decomposition (Ahluwalia & Keller 1977) equivalent to obtaining eigenfunc-
tions. The latter approach, which is used here, can be also widely applied, such as to
duct acoustics (Pridmore-Brown 1958; Swinbanks 1975; Mani 1980; Wang & Kassoy
1992). However, much care is required to normalize the eigenfunctions when the mean
flow has an arbitrary velocity profile. In this study, by introducing an adjoint operator
for the third-order convective wave equation with a mixed-type boundary condition,
the corresponding Hilbert space is constructed and eigenfunctions are normalized
for channelled waves. To define the inner product, the method developed by Sal-
wen & Grosch (1981) for the Orr–Sommerfeld equation is modified for compressible
(inviscid) flows. This formulation is potentially usable to estimate acoustic pressure
disturbances downstream with knowledge of the turbulent spectrum upstream. Thus,
for the study of interior noise (Wilby 1996), not only the direct pressure fluctuation
on the wall (Howe & Shah 1996; Graham 1996), but also the contribution from
channelled waves should be taken into account.

On the other hand, upstream of the source, diffracted waves occupy the shadow
zone instead of direct waves. If the angle of the ray becomes nearly tangent to
the wall, these waves are allowed to propagate along the wall and to successively
depart toward the shadow zone. These diffracted waves are exponentially decaying
with respect to the distance from the source. Diffracted waves of similar types were
formulated for wave equations with a transversely-varying index in the context of
general geometrical acoustics by Seckler & Keller (1959a, b). For the current study, in
the presence of velocity gradient, the derivation is almost identical to theirs although
the wavenumber is included in the corresponding refraction index. By following
their procedure, diffracted waves in a boundary layer with a finite free-stream Mach
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number are formulated in the high-frequency limit. This formula is also useful to
characterize the acoustic impedance of the wall.

An additional important aspect of a boundary layer is the viscous effect. When
the acoustic wavelength becomes equivalent to or shorter than the boundary layer
thickness, the coupling of three aerodynamic modes – acoustic, vorticity and entropy –
becomes significant on the wall; hence, the simple boundary condition, ∂p/∂n = 0,
can no longer be applied. In the past, appropriate mixed-type boundary conditions
have been derived assuming the free-stream Mach number to be negligible (refer to
Pierce 1989; Anderson & Vaidya 1991). At high free-stream Mach numbers, however,
these formulas for the boundary conditions need to be modified: the velocity gradient
of the mean flow must be taken into account.

In this paper, all these aspects, which are relevant to the sound from a boundary
layer with a finite free-stream Mach number, are investigated based on both theories
and numerical simulations. In two dimensions the full Navier–Stokes equations are
solved using direct numerical simulation (DNS) for five cases (λ/δBL = 4.0, 1.0 and
0.25 at M∞ = 0.8; and λ/δBL = 1.0 at M∞ = 0.3 and 1.2). A stationary sound source
is prescribed by highly localized forcing terms, which simulate a time-harmonic
monopole-type source. The results show that the direct waves in the high- and
intermediate-frequency cases (λ/δBL = 0.25 and 1.0) agree with the high-frequency
limit relatively well, while the low-frequency case (λ/δBL = 4.0) shows that the peak
amplitude appears beyond the critical angle. Moreover, the comparison between the
theory and DNS indicates that the peak amplitude is over-estimated. Regarding
channelled waves, the mode shapes and amplitudes obtained from DNS are success-
fully predicted by the eigenfunctions calculated using the mean velocity profile of
the DNS. In the shadow zone, the analytical expressions for diffracted waves and
the DNS results are compared in terms of pressure amplitude: it is observed that the
analytical expression based on the Neumann boundary condition (∂p/∂n = 0) agrees
fairly well except in the low-frequency case (λ/δBL = 4.0). Thus, various aspects of
the acoustic phenomena associated with refraction and interaction with the wall are
systematically studied over a wide range of the source frequency and the free-stream
Mach number.

The outline of this paper is as follows. In § 2, Green’s functions for a source in a
boundary layer are derived: the low- and high-frequency asymptotes of direct waves,
the normal mode decomposition of channelled waves, and diffracted waves in the
high-frequency limit are formulated. In addition, the acoustic impedance for a viscous
wall under a finite free-stream Mach number is discussed. In § 3, the procedures for
the numerical simulations are described. In § 4, the theoretical predictions and the
numerical simulations are compared, and the results are discussed. In the last section,
conclusions are presented.

2. Derivation of Green’s functions
This section describes the solutions for a stationary monopole source in a boundary

layer, namely Green’s functions. The conditions of the mean flow are similar to Part
1 namely a transversely sheared flow with constant temperature is assumed. For the
coordinate system, x is taken to be the flow direction, y to be the vertical direction,
z to be the spanwise direction, and η to be the vertical source position (see figure 2).
To non-dimensionalize the equations, the ambient acoustic wavelength (at M = 0) is
taken to be the length scale and the ambient speed of sound to be the velocity scale.
(Thus, the angular frequency ω is equivalent to 2π.) A non-dimensional length scale
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Figure 2. Coordinate system of a two-dimensional boundary layer.

of mean flow variation, ε, is defined so that it can fully cover any type of boundary
layer thickness, such as the momentum thickness, the 99% velocity thickness, a length
scale δBL defined later, etc. Since most of the derivation is analogous to the previous
paper, only the differences are emphasized in this paper.

2.1. Low frequency Green’s function for direct waves

To obtain Green’s functions in a boundary layer, one can follow the procedures
shown in § 2 of Part 1 (Suzuki & Lele 2003). The wave operator of the governing
convective wave equation (Pridmore-Brown 1958) together with the monopole-type
time-harmonic point source can be expressed as

D

Dt

[
D2Π

Dt2
− ∂

∂xj

(
a2 ∂Π

∂xj

)]
+ 2

∂uk

∂xj

∂

∂xk

(
a2 ∂Π

∂xj

)
=

D

Dt
[e−iωtδ(x)δ(y)], (2.1)

where D/Dt ≡ ∂/∂t+ uj∂/∂xj , a is the speed of sound, and Π ≡ γ−1 log(p/p∞) (γ
denotes the specific heat ratio and p∞ the ambient pressure). Note that (2.1) is
expressed as the linearized form, the exact nonlinear equation for which was derived
by Lilley (1974). Assuming that the mean velocity is transversely sheared, i.e. uj/a ≡
(M(y), 0, 0), one can take a Fourier transform of (2.1) in time and the flow direction;
accordingly, the transformed convective wave operator becomes

∂2Π̂

∂y2
− 2

n̄′

n̄

∂Π̂

∂y
+ ω2(n̄2 − k̄2)Π̂ = 0, (2.2)

where

Π̂(ω, k, y) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞
Π(t, x, y) eiωte−ikx dt dx, (2.3)

and n̄(y) ≡ 1− k̄M(y), which corresponds to an ‘index of refraction’, and k̄ is the
normalized wavenumber in the x-direction. They are defined as n ≡ ωn̄ and k ≡ ωk̄,
respectively.

Now, the only difference between a mixing layer and a boundary layer is the
boundary condition. To generalize the problem, impose the third-kind (mixed-type)
boundary condition:

∂Ĝ

∂y
− iωZĜ = 0 at y = 0. (2.4)
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Here, the acoustic impedance Z can be complex and take any magnitude in this
study (0 6 |Z| 6 ∞). Note that Z as defined here is normally called an ‘acoustic
admittance’. Although in many cases, particularly when the Reynolds number is
relatively high and the acoustic frequency is not extremely high, one can assume
Z = 0 for a solid wall. However, in viscous flows the acoustic disturbances invoke
other aero-dynamic modes involving vorticity and entropy disturbances; hence, Z
takes a non-zero value. Section 2.5 (and Appendix C for the derivation) discusses
the acoustic impedance for viscous boundary layers with a high free-stream Mach
number. In the free stream (y →∞), the Sommerfeld radiation condition is imposed.

To derive the low-frequency Green’s functions for direct waves, one can use asymp-
totic matching. The procedure is equivalent to using a vortex sheet across the source
position (Beckemeyer 1974). The derivation given below may be more general than
the one in Ffowcs Williams & Purshouse (1981). Here, the length scale ε is defined so
that it satisfies |(M(ε)−M(∞))/M(∞)| � 1, yet it is much smaller than the acoustic
wavelength. First, consider the one-dimensional Green’s function which is periodic in
time and the flow direction, namely the solution for plane waves. Referring to the
derivation in the mixing layer case (Suzuki & Lele 2003), one notices that only the
outer solution on the lower side (A 13) in Part 1 must be replaced by (2.4). Moreover,
because of the non-slip boundary condition, it is reasonable to assume M(0) = 0;
hence, n̄0 ≡ n̄(0) = 1. Accordingly, the one-dimensional Green’s function for direct
waves can be obtained as follows:

Ĝ
DR,low
(1) (y) =

exp

[
i

(
ω

√
n̄2∞ − k̄2y − 1

2
π

)]
ωn̄2

η

(√
n̄2∞ − k̄2/n̄2∞ −Z

) , (2.5)

where the superscript ‘DR’ stands for direct waves, and ‘low ’ for the low-frequency
limit. The subscript (1) represents the dimension, the other subscripts denote the
position in the y-coordinate, such as n̄η ≡ n̄(η), and the subscript ∞ denotes the
free-stream quantity.

Similarly, to derive Green’s function in two dimensions (for a line source), take an
inverse Fourier transform of (2.5),

Ĝ(2)(x, y | ω, 0, η) =
1

2πi

∫ ∞
−∞

exp

[
iω

(
k̄xx+

√
n̄2∞ − k̄2

xy

)]
n̄2
η

(√
n̄2∞ − k̄2

x/n̄
2∞ −Z

) dk̄x. (2.6)

The arguments of Ĝ before the vertical bar denote the observer position, and the ones
after denote the source frequency and the source position. The far-field asymptotic
Green’s function in two dimensions can be obtained using the stationary phase
method as

Ĝ
DR,low
(2) (r, φ | ω, 0, η)

≈ sinφ√
2πωr(1−M2∞ sin2 φ)

3/4

exp

i

−M∞ cosφ+

√
1−M2∞ sin2 φ

1−M2∞
ωr− 3

4
π


(n̄?η)

2

(1−M2∞)2 sinφ

√
1−M2∞ sin2 φ(√

1−M2∞ sin2 φ−M∞ cosφ
)2
−Z


, (2.7)
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where x ≡ r cosφ and y ≡ r sinφ. The stationary point is given by

k̄?x =
1

1−M2∞

−M∞ +
cosφ√

1−M2∞ sin2 φ

 . (2.8)

Note that n̄?η in (2.7) is evaluated at k̄ = k̄?.
Finally, the three-dimensional asymptotic Green’s function becomes

Ĝ
DR,low
(3) (r, θ, φ | ω, 0, η, 0)

≈ −1

2πr

sin θ sinφ

1−M2∞(cos2 θ + sin2 θ sin2 φ)

×
exp

i
−M∞ sin θ cosφ+

√
1−M2∞(cos2 θ + sin2 θ sin2 φ)

1−M2∞
ωr


(n̄?η)

2

 (1−M2∞)2 sin θ sinφ

√
1−M2∞(cos2 θ + sin2 θ sin2 φ)(√

1−M2∞(cos2 θ + sin2 θ sin2 φ)−M∞ sin θ cosφ
)2
−Z


, (2.9)

where the stationary point is

k̄?x =
1

1−M2∞

−M∞ +
sin θ cosφ√

1−M2∞(cos2 θ + sin2 θ sin2 φ)

 , (2.10)

k̄?z =
cos θ√

1−M2∞(cos2 θ + sin2 θ sin2 φ)
. (2.11)

Likewise, x ≡ r sin θ cosφ, y ≡ r sin θ sinφ and z ≡ r cos θ. Thus, the low-frequency
Green’s functions for direct waves in a boundary layer have been derived. Notice that
when Z = 0, (2.7) and (2.9) take finite values in 0◦ 6 φ 6 180◦, while when Z 6= 0,
they vanish at φ = 0◦ and 180◦. However, near φ = 180◦ the next order terms in ε
should be included when the leading-order terms in the denominator vanish. On the
other hand, in the downstream direction, waves called ‘channelled waves’ propagate
along the wall with large amplitude. These waves are discussed in § 2.3.

2.2. High-frequency Green’s function for direct waves

In the high-frequency limit, the method introduced in § 2.2 of Suzuki & Lele (2003)
(the original method is based on Avila & Keller 1963 and Goldstein 1982) can be
applied. To modify it for a boundary layer, the mirror image technique is used. Take
(2.15) in Part 1 to be an inhomogeneous solution (waves directly propagating from
the source) and superpose a homogeneous solution (waves reflected from the wall).
The summation can be expressed as follows:

Ĝ(1)(y) = A1(y) exp

[
−iω

∫ y

η

√
n̄2(y′)− k̄2 dy′

]

+A2(y) exp

[
iω

∫ y

η

√
n̄2(y′)− k̄2 dy′

]
(0 6 y < η). (2.12)
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Substituting (2.12) into the mixed-type boundary condition (2.4) and evaluating it at
y = 0, one can obtain the one-dimensional Green’s function (plane wave solution) as

Ĝ
DR,high
(1) (y) =

[
1 +

√
1− k̄2 +Z√
1− k̄2 −Z exp

(
i2ω

∫ η

0

√
n̄2(y′)− k̄2 dy′

)]

×
n̄∞ exp

[
iω

∫ y

η

√
n̄2(y′)− k̄2 dy′

]
i2ωn̄η(n̄2

η − k̄2)1/4(n̄2∞ − k̄2)1/4
. (2.13)

Here, the superscript ‘high ’ stands for the high-frequency limit. At high-frequencies,
interference occurs between waves directly propagating upward and those reflected
once from the wall.

In the two- and three-dimensional cases, as shown in (2.16) of Part 1, one can
approximate the stationary points k̄?x by (2.8), or k̄?x and k̄?z by (2.10) and (2.11),
respectively. By following the same procedure, the two- and three-dimensional high-
frequency Green’s functions for direct waves in the far field can be obtained as
follows:

Ĝ
DR,high
(2) (r, φ | ω, 0, η) ≈

1 +

√
1− (k̄?x)

2 +Z√
1− (k̄

?

x)
2 −Z

exp

(
i2ω

∫ η

0

√
(n̄?(y′))2 − (k̄?x)

2 dy′
)

× 1

2
√

2πωr

√
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(√
1−M2∞ sin2 φ−M∞ cosφ

)
(1−M2∞)(1−M2∞ sin2 φ)

×exp
[−i

(
ωrϕ(k̄?x) + 3

4
π
)]

n̄?η((n̄
?
η)

2 − (k̄?x)
2)1/4

, (2.14)

Ĝ
DR,high
(3) (r, θ, φ | ω, 0, η, 0) ≈

1 +

√
1− (k̄?x)

2 − (k̄?z )
2 +Z√

1− (k̄?x)
2 − (k̄?z )

2 −Z
× exp

(
i2ω

∫ η

0

√
(n̄?(y′))2 − (k̄?x)

2 − (k̄?z )
2 dy′

)]
×−1

4πr

√
sin θ sinφ

(1−M2∞)[1−M2∞(cos2 θ + sin2 θ sin2 φ)]5/4

× exp[−iωrϕ(k̄?x, k̄
?
z )]

n̄?η((n̄
?
η)

2 − (k̄?x)
2 − (k̄?z )

2)1/4
. (2.15)

Here, ϕ(k̄x) ≡ ∫ yη √n̄2(y′)− k̄2
x dy′/r in (2.14), and ϕ(k̄x, k̄z) in (2.15) is similarly de-

fined. Unlike the low-frequency limit, (2.14) and (2.15) vanish at φ = 0◦ and 180◦
regardless of the value of Z. However, along the wall, channelled waves propagate
downstream at high-frequencies as well. In addition, the denominator ((n̄?η)

2− (k̄?x)
2)1/4

or ((n̄?η)
2 − (k̄?x)

2 − (k̄?z )
2)1/4 can vanish at certain k̄x and k̄z . Therefore, there is a

region which direct waves cannot reach and also an angle beyond which rays cannot
propagate in the far field. This region is referred to as a ‘shadow zone’, and the angle a
‘critical angle’. The ray propagating along the boundary of the shadow zone is called
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a ‘limiting ray’. Refer to figure 1 for a typical sound radiation pattern. The formula
for the critical angle is shown in Appendix A. In the shadow zone, diffracted waves
propagate instead. Channelled waves and diffracted waves are discussed in § 2.3 and
§ 2.4, respectively.

2.3. Channelled waves along the downstream wall

When the initial grazing angle of the ray is lower than a certain threshold value,
this ray propagates downstream, bouncing between the turning points and the solid
wall. These waves are called ‘channelled waves’ in this paper. To analyse such waves,
the incompressible viscous theory developed by Salwen & Grosch (1981) is modified
to a compressible inviscid theory; subsequently, the normal mode decomposition
(Ahluwalia & Keller 1977) is applied.

Consider a two-dimensional case (a line source). Suppose viscous dissipation
throughout the medium and energy absorption on the wall are negligible. Conse-
quently, one can express the acoustic field as a superposition of discrete and contin-
uous modes of the governing equation: the transformed third-order convective wave
operator in the present case. Here, the discrete modes are exponentially decaying in
the vertical direction and called the ‘normal modes’ in this paper. Among these modes,
ones with purely real wavenumbers in the flow directions correspond to channelled
waves. By contrast, the continuous modes have oscillatory behaviour as y →∞, and
are responsible for direct waves. These two types of mode shapes in the vertical
direction (the discrete mode expressed by A(y) and the continuous mode by B(kx, y))
are called the ‘eigenfunctions’ here. Hence, the eigenfunction times eikxx becomes the
normal mode for discrete cases. With these two types of modes, the acoustic pressure
field is expressed as

Π(2)(t, x, y)

=


e−iωt

[
N−∑
m−=1

am−Am−(y) eikxm−x +

∫ 0

−∞
B−(kx, y) eikxx dkx

]
if x < 0,

e−iωt

 N+∑
m+=1

am+
Am+

(y) eikxm+x +

∫ +∞

0

B+(kx, y) eikxx dkx

 if x > 0,

(2.16)

where Re[kxm−] < 0 and Re[kxm+
] > 0. The wavenumber is expressed by kx instead of

ωk̄x for later convenience, and am is the complex coefficient of the mth normal mode.
Note that in addition to these two modes, there exist so-called ‘gust solutions’ which
are associated with the singularity due to the convective velocity (refer to Swinbanks
1975 or Möhring, Müller & Obermeier 1983 for details). These modes should be
similarly treated by appropriately taking a branch cut. Among the discrete modes,
the one which does not decay in the x-direction needs to be extracted. All Am±(y) are
the solutions to the transformed third-order convective wave operator:

LAm(y) ≡ (ω−kxmM)
d2Am

dy2
+2kxm

dM

dy

dAm
dy

+(ω−kxmM)[(ω − kxmM)2−kxm2]Am = 0,

(2.17)
with the boundary conditions given by

dAm
dy

= 0 at y = 0, Am → 0 as y →∞. (2.18)

Likewise, B(kx, y) satisfies the transformed wave operator (2.17), but the second
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boundary condition is replaced by

dB

dy
→ i
√

(ω − kxM∞)2 − k2
xB as y →∞. (2.19)

For simplicity, the acoustic impedance is set to be Z = 0: As seen later, this assump-
tion is reasonable except for very large negative wavenumbers. Note that as described
by Salwen & Grosch (1981), the number of normal modes should be finite in (2.16).
In addition, kxm can be complex; however, Mack (1984) reported that there are no
inviscid modes which are exponentially growing in a Blasius boundary layer velocity
profile with a moderate free-stream Mach number. In fact, only one mode with a
purely real kxm+

was found in each DNS case based on numerical integration of (2.17)
with (2.18). On the other hand, all kxm− are complex in the upstream direction: these
waves actually correspond to diffracted waves, which are described in next section.
Now, substitute (2.16) into (2.1) to obtain

L(Π) ≡ ω3Π + i3ω2M
∂Π

∂x
+ ω(1− 3M2)

∂2Π

∂x2
+ i(M −M3)

∂3Π

∂x3

+ω
∂2Π

∂y2
+ iM

∂3Π

∂x∂y2
− i2

dM

dy

∂2Π

∂x∂y

= −
(
ωδ(x) + iM

∂δ(x)

∂x

)
δ(y − η). (2.20)

Then take the second-order moment of (2.20) to obtain the jump condition, namely

calculate
∫ 0+

0− x
2L(Π) dx. The result can be simplified as

N+∑
m+=1

am+
Am+

(y) +

∫ +∞

0

B+(kx, y) eikxx dkx

−
N−∑
m−=1

am−Am−(y)−
∫ 0

−∞
B−(kx, y) eikxx dkx = 0. (2.21)

Likewise, the first- and zeroth-order moments yield

N+∑
m+=1

ikxm+
am+

Am+
(y) +

∫ +∞

0

ikxB+(kx, y) eikxx dkx

−
N−∑
m−=1

ikxm−am−Am−(y)−
∫ 0

−∞
ikxB−(kx, y) eikxx dkx = − 1

1−M2(y)
δ(y − η), (2.22)

N+∑
m+=1

−k2
xm+
am+

Am+
(y) +

∫ +∞

0

−k2
xB+(kx, y) eikxx dkx −

N−∑
m−=1

−k2
xm−am−Am−(y)

−
∫ 0

−∞
−k2

xB−(kx, y) eikxx dkx = iω
2M(y)

(1−M2(y))2
δ(y − η). (2.23)

To determine the coefficient am, the Hilbert space of these normal modes must be de-
fined using an adjoint operator. This method is analogous to that of Salwen & Grosch
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(1981) in which they discussed eigenfunction expansions for the Orr–Sommerfeld
equation. Here, the adjoint convective wave operator can be written as

L†A†n(y) ≡ (ω − kxnM)
d2A†n
dy2

− 4kxn
dM

dy

dA†n
dy

+(ω − kxnM)

[
(ω − kxnM)2 − k2

xn − 3kxn d2M/dy2

ω − kxnM
]
A†n = 0, (2.24)

with the boundary conditions given by

dA†n
dy

= 3
kxn

ω

dM

dy
A†n at y = 0, A†n → 0 as y →∞. (2.25)

The adjoint eigenfunctions of the continuous mode, B†(kx, y), also satisfy (2.24), (2.25)
at y = 0, and (2.19) as y →∞. Using the original wave operator (2.17) and the adjoint
operator (2.24), the following conservation form can be derived:∫ ∞

0

Π†n [L(ωm, kxm)Πm] dy +

∫ ∞
0

Πm[L†(ωn, kxn)Π†n ] dy

+

(
∂Πm

∂t

∂Π†n
∂y
− 3

dM

dy

∂Π†n
∂x

Πm

)
y=0

=
∂

∂t

∫ ∞
0

Jt(Π
†
n , Πm) dy +

∂

∂x

∫ ∞
0

Jx(Π
†
n , Πm) dy, (2.26)

where

Πm = Am(y) e−i(ωmt−kxmx), Π†n = A†n(y) ei(ωnt−kxnx), (2.27)

Jt(Π
†
n , Πm) = Π†n

∂2Πm

∂t2
+Πm

∂2Π†n
∂t2

− ∂Π†n
∂t

∂Πm

∂t
+ 3M

(
Π†n

∂2Πm

∂t∂x
+Πm

∂2Π†n
∂t∂x

)

+(1− 3M2)
∂Π†n
∂x

∂Πm

∂x
−Π†n ∂

2Πm

∂y2
−Πm

∂2Π†n
∂y2

− ∂Π†n
∂y

∂Πm

∂y
, (2.28)

and

Jx(Π
†
n , Πm) = −3M

∂Π†n
∂t

∂Πm

∂t
− (1− 3M2)

(
Π†n

∂2Πm

∂t∂x
+Πm

∂2Π†n
∂t∂x

)

−(M −M3)

(
Π†n

∂2Πm

∂x2
+Πm

∂2Π†n
∂x2

− ∂Π†n
∂x

∂Πm

∂x

)

−M
(
Π†n

∂2Πm

∂y2
+Πm

∂2Π†n
∂y2

+
∂Π†n
∂y

∂Πm

∂y

)

+
dM

dy

(
2Π†n

∂Πm

∂y
−Πm

∂Π†n
∂y

)
. (2.29)

Here, only the mixed-type boundary conditions are retained. Since Πm and Π†n are
the solutions to (2.17) and (2.24), respectively, first two terms in (2.26) always vanish.
In a spatial problem, since the frequency is common between Πm and Π†n as long as
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the boundary condition (2.25) is satisfied, only the last term on the right-hand side in
(2.26) remains,

∂

∂x

∫ ∞
0

Jx dy = −i(kxn − kxm)

∫ ∞
0

Jx dy = 0. (2.30)

Thus, when the wavenumbers of the normal modes are different, this particular
‘inner-product’ must be

∫ ∞
0
Jx dy = 0, by which a bi-orthogonal system is constructed.

This inner product can extract a discrete mode from an arbitrary superposition
consisting of discrete and continuous modes and normalize the eigenfunction. No-
tice that this system is, however, invalid between two continuous modes because
the boundary terms at y →∞ remain. In a temporal problem, however, the or-
thogonal condition does not simply become (ωn − ωm)

∫ ∞
0
Jt dy = 0 in these expres-

sions due to the mixed-type boundary condition. See Appendix B for the temporal
problem.

In addition to the boundary layer problem, this method can be extended to two-
dimensional duct geometries with an arbitrary mean velocity profile by imposing the
boundary conditions on both sides (for example, y = 0 and y = H). Supposing the
pressure fluctuation is dominated by the acoustic modes and the acoustic fluctuation
is given at a certain cross-section, the problem can be decomposed into normal
modes with appropriate coefficients using this inner product. Thus, the acoustic fields
at other cross-sections are possibly predicted; however, when the magnitudes of the
other modes, vorticity and entropy, become comparable to the acoustics mode in terms
of pressure, this inner product cannot extract a certain acoustic mode. As another
example, by knowing the source term, such as the velocity fluctuation in a turbulent
boundary layer, the pressure disturbance on the downstream wall can be estimated,
assuming that the boundary layer thickness is nearly constant. Furthermore, using
this method, the receptivity of instability waves in a two-dimensional mixing layer
can be estimated as described in § 2.5 of Part 1. Now, to determine the coefficient an,
calculate the following ‘inner product’ using (2.21), (2.22), and (2.23):

Jx

(
Π†n , e−iωt

[
N+∑
m+=1

am+
Am+

eikxm+x +

∫ +∞

0

B+(kx, y) eikxx dkx

−
N−∑
m−=1

am−Am−eikxm−x −
∫ 0

−∞
B−(kx, y) eikxx dkx

])
= Jx(Π

†
n , anΠn). (2.31)

After some calculation, this yields

aCHn =
−i(ω − kxnMη)A

†
n(η)∫ ∞

0

Ĵx(ω, kxn, kxn, A
†
n, An) dy

, (2.32)

where

Ĵx(ω, kxn, kxm, A
†
n, Am) = [−3ω2M − ω(kxn + kxm)(1− 3M2)

+(k2
xn + kxnkxm + k2

xm)(M −M3)]A†nAm

−M
(
A†n

d2Am

dy2
+ Am

d2A†n
dy2

+
dA†n
dy

dAm
dy

)
+

dM

dy

(
2A†n

dAm
dy
− AmdA†n

dy

)
. (2.33)
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Here, the superscript ‘CH ’ stands for channelled waves. Am(y) and A†n(y) are computed
based on a compressible Blasius boundary layer profile, and the results are compared
with the DNS data in § 4.2.

To extend this result to three dimensions, one needs to repeat the same procedure
for each kz and to take an inverse Fourier transform. Suppose am(kz) and Am(y, kz)
are obtained as functions of kz . (Accordingly, the regular third-order wave operator
(2.17) and its adjoint operator (2.24) with −k2

z added in the brackets of the third
terms must be solved under the same boundary conditions.) Using these solutions,
the acoustic field can be expressed as follows:

Π(3)(t, x, y, z) =
e−iωt

2π

N∑
m=1

[∫ +∞

−∞
am(kz)Am(y, kz) ei[kxm(kz )x+kzz] dkz

+

∫ +∞

0

∫ +∞

−∞
B(kx, y, kz) ei(kxx+kzz) dkz dkx

]
(x > 0+), (2.34)

and the coefficient aCHm (kz) can be similarly determined. Since the normal modes with
a negative Im[kxm] exponentially decay downstream, only the modes with a real kxm
(in three dimensions, families of these modes) dominate the sound within a boundary
layer.

2.4. Diffracted waves in the shadow zone

It is seen from (2.8) (or (2.10) and (2.11) in three dimensions) that beyond the critical
angle, no stationary point exists; therefore, instead of direct waves, diffracted waves
propagate in the shadow zone. Part of the acoustic energy propagating upstream
along the wall keeps departing toward the shadow zone. As described later, the
ray trajectories of these diffracted waves have an identical shape to the limiting
ray. At high-frequencies, Seckler & Keller (1959a, b) derived diffracted waves using
two different methods, separation of variables and a contour integral, and obtained
an identical result. Here, the method based on a contour integral is reviewed and
modified for a boundary layer with a finite free-stream Mach number.

Start with (2.14) in Part 1, and neglect the lower-order term at high-frequencies,

∂2Ĝ•(1)

∂y2
+ ω2[n̄2(y, k̄)− k̄2]Ĝ•(1) =

δ(y − η)

n̄
. (2.35)

Here, Ĝ• ≡ Ĝ/n̄. Formulate the homogeneous solutions to (2.35) as follows:

Ĝ•(1)(y) =

{
g1(y) = c1h1(y) if y > η,
g2(y) = c3h1(y) + c2h2(y) if 0 < y < η.

(2.36)

Note that h1 indicates up-going waves and h2 down-going waves. From the boundary
condition on the wall (2.4), the coefficient c3 can be determined as follows:

c3 = − (Υh2)0

(Υh1)0

c2, (2.37)

where Υ ≡ ∂/∂y− iωZ• andZ• ≡ Z+in̄′0/(ωn̄0); however, the second term in̄′0/(ωn̄0)
approaches zero in the high-frequency limit. To connect the solutions across the source
position y = η, apply the asymptotic expansion used for the one-dimensional high-
frequency Green’s function (see Appendix A in Part 1); subsequently, (2.36) yields

Ĝ•(1)(y) =
1

n̄η(g
′
1g2 − g′2g1)η

{
g2(η)g1(y) if y > η,
g1(η)g2(y) if 0 6 y < η.

(2.38)
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Here, the Wronskian can be calculated as (g′1g2−g′2g1)η = c1c2(h
′
1h2−h′2h1)η . Knowing

that h1 and h2 are the homogeneous solutions to (2.35), one can easily confirm that
the Wronskian is constant with respect to y. Accordingly, evaluate the Wronskian on
the wall y = 0, and rewrite (2.38) in terms of h1 and h2. After substituting it into the
expression for an inverse Fourier transform, the equation for y > 0 yields

Ĝ•(2)(x, y|ω, 0, η) = − ω
2π

∫ +∞

−∞
[h1(η)(Υh2)0 − h2(η)(Υh1)0]h1(y) exp[iωk̄xx]

n̄η(h
′
1h2 − h′2h1)0(Υh1)0

dk̄x. (2.39)

Now, to calculate (2.39), consider a contour integral. As shown by Seckler & Keller
(1959b), only the term (Υh1)0 in the denominator contributes to a residue; hence,
evaluate the rest of the terms at k̄∗x satisfying (Υh1)0 = 0. Since h1 and h2 are linearly
independent solutions propagating in opposite directions, it can be assumed that
h′1(0) = iωZ•h1(0) and h′2(0) = −iωZ•h2(0). Consequently, (2.39) can be simplified as
follows:

Ĝ(2)(x, y|ω, 0, η) ≈ −iω
h∗1(0)(Υh2)

∗
0h
∗
1(η)h∗1(y) exp[iωk̄∗xx]

n̄∗η(h′1h2 − h′2h1)
∗
0[h1∂(Υh1)/∂k̄x]

∗
0

= −i
h∗1(η)h∗1(y) exp[iωk̄∗xx]

[(n̄∗0)2 − (k̄∗x)2 − (Z•)2]n̄∗η(h∗1(0))2(∂y/∂k̄x)
∗
0

, (2.40)

where the quantities with the superscript ∗ are evaluated at k̄x = k̄∗x. To compute k̄∗x,
approximate it using a second-order polynomial. Although the corresponding index n̄
includes the wavenumber k̄x, the result becomes identical to (51) in Seckler & Keller
(1959b) in the high-frequency limit,

k̄∗x ∼ −n̄0 −
[

(n̄′0)2

6ω2n̄0

]1/3

eiπ/3qm, (2.41)

where it is reasonable to assume n̄0 = 1 and n̄′0 ≈M ′(0), and qm is a discrete solution
to the following equation:

A′(qm)

A(qm)
= ei5π/6Z•

(
ω

6n̄0n̄
′
0

)1/3

. (2.42)

Here, the Airy function is defined by (refer to Abramowitz & Stegun 1965)

A(q) ≡
∫ ∞

0

cos(t3 − qt) dt
(

=
π

31/3
Ai
(
− q

31/3

))
. (2.43)

Note that to derive (2.42), only the leading terms in the high-frequency limit are
retained. Likewise, in the high-frequency limit (∂y/∂k̄x)

∗
0 = −1/n̄

′∗
0 using (2.41). Fur-

thermore, the asymptotic form of h1(y) for large |y − η| is given by

h1(y) =

(
3

πω

)1/2
v1/2

(n̄2 − k̄2
x)

1/4
H

(1)
1/3(v) ≈

(
3

πω

)1/2 exp[i(v − 5
12
π)]

(n̄2 − k̄2
x)

1/4
, (2.44)

where v(y) = ω
∫ y
y∗

√
n̄2(y′, k̄x)− k̄2

x dy′ and y∗ denotes the turning point. Note that

(2.41) is derived by setting v(0) = −2qm/3
3/2. Consequently, substituting (2.41), (2.42)
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and (2.44) into (2.40) yields

Ĝ(2)(x, y|ω, 0, η) ≈ πeiπ/3

461/3

[
(n̄∗0)′

ω(n̄∗0)2

]2/3

×
exp

[
iω

(
k̄∗xx+

∫ η

y∗
+

∫ y

y∗

√
(n̄∗)2 − (k̄∗x)2 dy′

)]
[qmA2(qm) + 3A′2(qm)]n̄∗η((n̄∗η)2/(n̄∗0)2 − 1)1/4((n̄∗(y))2/(n̄∗0)2 − 1)1/4

.

(2.45)

To simplify the phase part of (2.45), divide the interval of the integration at y = 0.
After some calculation using (2.41), it can be rewritten as∫ η

y∗
+

∫ y

y∗

√
(n̄∗)2 − (k̄∗x)2 dy′

≈
∫ η

0

+

∫ y

0

[√
(n̄∗)2 − (n̄∗0)2 − eiπ/3

61/3

qm

n̄0

[
n̄∗0(n̄∗0)′

ω

]2/3
M2n̄0 +M − n̄0√

(n̄∗)2 − (n̄∗0)2

]
dy′

− 1

ω

4

33/2
q3/2
m . (2.46)

Assuming both |x|, |y| � ε, only the far-field solution is derived here. As seen in the
stationary phase analysis, the rays become straight in the free stream. Therefore, the
integration of the second term on the right-hand side of (2.46) can be approximated
by ∫ η

0

+

∫ y

0

M2n̄0 +M − n̄0√
(n̄∗)2 − (n̄∗0)2

dy′ ≈ M2∞ +M∞ − 1√
M∞(M∞ + 2)

y. (2.47)

Notice that the interval of (2.46) corresponds to the limiting ray path and the
term exp[iωk̄∗xx] in (2.45) provides the same coefficient as the second term of (2.46).
Accordingly, the final expression becomes

Ĝ
DF,high
(2) (x, y|ω, 0, η)

≈ πeiπ/3

4 61/3

[
(n̄∗0)′

ω(n̄∗0)2

]2/3 n̄
∗∞ exp

[
iω

(
n̄∗0|x|+

∫ η

0

+

∫ y

0

√
(n̄∗)2 − (n̄∗0)2 dy′

)]
n̄∗η((n̄∗η)2/(n̄∗0)2 − 1)1/4((n̄∗∞)2/(n̄∗0)2 − 1)1/4

×∑
m

exp

[
ω

61/3n̄∗0
ei5/6π

[
n̄∗0(n̄∗0)′

ω

]2/3

qm

∣∣∣∣x− M2∞ +M∞ − 1√
M∞(M∞ + 2)

y

∣∣∣∣− i
4

33/2
q

3/2
m

]
qmA2(qm) + 3A′2(qm)

.

(2.48)

Again, the superscript ‘DF ’ stands for diffracted waves. To calculate (2.48), it is
reasonable to substitute k̄∗x ≈ −1. For extreme cases, A(qm) = 0 (ω1/3|Z•| → ∞), and
A′(qm) = 0 (Z• = 0), discrete values of qm are given in table 1 (see Abramowitz &
Stegun 1965). Expression (2.48) including terms up to m = 5 is compared with DNS
in terms of amplitude later.

The three-dimensional expression (for a point source) can be similarly derived.
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Zeros q1 q2 q3 q4 q5 q6

A(qm) = 0 3.3721 5.8958 7.9620 9.7881 11.4574 13.0129
A′(qm) = 0 1.4693 4.6847 6.9518 8.8890 15.1835 17.8620

Table 1. Zeros of the Airy function.

Direct substitution into (62) of Seckler & Keller (1959b) yields

Ĝ
DF,high
(3) (x, y|ω, 0, η)

≈ π1/2eiπ/12

25/2 61/3

[
(n̄∗0)′

4

ω(n̄∗0)5

]1/6 n̄∗∞ exp

[
iω

(
n̄∗0
√
x2 + z2 +

∫ η

0

+

∫ y

0

√
(n̄∗)2 − (n̄∗0)2 dy′

)]
n̄∗η
√
x2 + z2((n̄∗η)2/(n̄∗0)2 − 1)1/4((n̄∗∞)2/(n̄∗0)2 − 1)1/4

×∑
m

exp

[
ω

61/3n̄∗0
ei5/6π

[
n̄∗0(n̄∗0)′

ω

]2/3

qm(
√
x2 + z2 −√X2 + Z2)− i

4

33/2
q

3/2
m

]
qmA2(qm) + 3A′2(qm)

,

(2.49)

where X and Z denote the coordinates at which a ray passing through the observer
point departs from the wall. The exponential decay rate is the same as the two-
dimensional case (2.48), but the cylindrical spreading rate is included in (2.49).

2.5. Boundary conditions from the modal analysis

In a viscous boundary layer, acoustic disturbances invoke other aero-dynamic dis-
turbance modes, i.e. vorticity and entropy modes. In particular, when the acoustic
wavelength is short, these three modes couple on the wall (see figure 3). There-
fore, the superposition of these three modes must satisfy the non-slip as well as
the no-penetration boundary conditions; accordingly, the simple boundary condition
∂p/∂n = 0 is no longer valid. Such a mode coupling was analysed using an asymptotic
method by Kirchhoff (1868); consequently, appropriate viscous boundary conditions
in a quiescent flow have been derived (the derivation is summarized in Pierce 1989);
however, the effect of a steep velocity gradient near the wall was not taken into
account. In this study, assuming that the mean velocity is transversely sheared, the
viscous boundary conditions under a high free-stream Mach number are obtained.
The derivation is given in Appendix C. These boundary conditions are valid when

Re
−1/2
ac � min{|λ/δBL|, |δBL/λ|}, which is satisfied in the DNS of this study (here,

the Reynolds number Reac is based on the acoustic wavelength and the speed of
sound). The resultant formulas for the acoustic impedances for an adiabatic and an
isothermal wall are given by

Zadb
(2) ≈ −1− i

2
ωl̄vork̄

2
x

1 + 1
2
(1 + i)ωΛl̄ 2

ent/l̄vor

1 + 1
2
(1 + i)ωΛl̄vor(1− [(1− Pr)/2Pr]k̄2

x)
, (2.50)

Zist
(2) ≈ −1− i

2
ω

(γ − 1)l̄ent(1 + 1
2
(1 + i)ωΛl̄vor) + l̄vork̄

2
x(1 + 1

2
(1 + i)ωΛl̄ent)

1 + 1
2
(1 + i)ω(l̄vor/k̄x)(2Pr/(1− Pr)− k̄2

x)(dM/dy)wall
. (2.51)
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y

x

Velocity profile

Solid wall

M∞

δBL

λ

Acoustic mode

Vorticity mode

Entropy mode

aε1/2

ω ∼ Re–1/2

Figure 3. Schematic of length scales of the aero-dynamic modes in a viscous boundary layer.
ε denotes the order of εµ or εκ defined after (C 5)–(C 7) in Appendix C.

Here, the superscripts ‘adb’ and ‘ist’ denote adiabatic and isothermal walls, respectively,
and

l̄vor ≡
√

M∞
πReac

, l̄ent ≡
√

M∞
πPrReac

, Reac ≡ a∞λ/ν, Λ ≡ 2Pr

1− Pr
1

ωk̄x

(
dM

dy

)
wall

.

In the DNS the adiabatic boundary condition was imposed; accordingly, (2.50) was
used for the theoretical prediction. In reality, as seen in figure 4, the effect of the mean
velocity shear is negligible for a laminar boundary layer at a moderate free-stream
Mach number. However, when the order of M∞ l̄(vor/ent)λ/δBL approaches unity, namely
ωΛl(vor/ent) ∼ O(1), the effect of the shear may need to be taken into account. Note
that the order of this parameter is ωΛl(vor/ent) ∼ 0.1 in the present DNS.

3. Numerical procedures
To compare the theoretical predictions with the numerical simulation, the full

Navier–Stokes equations were explicitly solved using direct numerical simulation
(DNS). For time marching, the standard fourth-order Runge–Kutta scheme was used.
For spatial differencing, the sixth-order Padé scheme (Lele 1992) was used for the
interior points. For the inflow and outflow, and the upper boundary points, lower-
order (third and fourth) Padé schemes were used (Lele 1992). On the wall, the
adiabatic boundary condition was imposed, with a third-order one-side-differencing
scheme in the computational domain to solve pressure. The grid size, time step,
etc. are shown in table 2. To prevent spurious reflection of acoustic waves from
the computational boundaries, a so-called ‘damping sponge’ (Freund 1997) was used
with the non-reflecting boundary conditions (Giles 1990). For the detailed numerical
procedures and validation, refer to Suzuki (2001).

For the initial velocity field, the compressible Blasius boundary layer equation was
solved using the Illingworth–Stewartson transformation. Based on this velocity field,
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Figure 4. Angle dependence of the acoustic impedance for an adiabatic wall. Using (2.50), the
acoustic impedance was computed for an adiabatic wall. The wavenumber k̄x was calculated based
on the angle of incidence φi using (2.8). Two curves at each Mach number almost overlap: −−−,
(∂M/∂y)wall = 0 (no mean flow; hence, Λ = 0); ——, (∂M/∂y)wall = M∞ (shear flow).

temperature and density were computed using the Crocco–Busemann relation with
the boundary conditions of ρ∞ = 1, T∞ = 1, and (∂T/∂y)wall = 0. The Prandtl number
was set to Pr = 0.7. The rest of the conditions are tabulated in table 2. Again, all
quantities are normalized by the ambient acoustic wavelength λ (at M = 0) and the
ambient speed of sound a∞. (The Reynolds number is defined by Re ≡ U∞λ/ν∞.) The
length scale of the medium (called a ‘boundary layer thickness’ for convenience) is
defined by

δBL =
U∞

(∂U/∂y)wall
, (3.1)

at x = 0. For reference (at M∞ = 0.8 and Re = 1× 104): the displacement thickness,
δdis = 0.467δBL; the momentum thickness, δmom = 0.145δBL; and the 99% velocity
thickness, δ99 = 1.66δBL. Note that the spreading rates of the boundary layer (defined
by the slope of the M(y) = M∞/2 line) in the DNS were less than 0.1% for all cases.

Based on the initial velocity profile, ray trajectories were computed using the eikonal
equation. Here, the temperature variation was ignored for simplicity. By the method
of characteristics, the ODE system was integrated using the standard fourth-order
Runge–Kutta scheme. Refer to Suzuki (2001) for the detailed procedures. A total of
60 rays was emitted in each case (every 6◦), and the minimum time step was set to be
∆t = 1/800 and exponentially stretched (less than a 3% increase for each time step).

To simulate a point source, the right-hand side of the Navier–Stokes equations was
forced. Instead of imposing a delta function, a Gaussian-shaped source term whose
narrow width limit becomes a delta function was imposed. With fine grid spacing near
the source region, spurious high-frequency waves can be reduced using such source
terms. By following the derivation of the third-order wave equation, it is deduced that
the following forcing terms yield such a source:

∂ρ

∂t
+
∂(ρuj)

∂xj
= Ap(t)γρF(t, x1, x2), (3.2)
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Case Figure numbers M∞ Re ≡ U∞λ/ν∞ λ/δBL Ro η

A 5, 6, 7, 22(a), 24(a) 0.8 4× 104 4.0 10 0.020
B 8, 9, 10, 22(b), 24(b), 27 0.8 1× 104 1.0 15 0.019
C 11, 12, 13, 20, 22(c), 23, 24(c) 0.8 2.5× 104 0.25 28 0.031
D 14, 15, 16, 21, 22(d ), 24(d ) 0.3 0.375× 104 1.0 15 0.019
E 17, 18, 19, 22(e), 24(e) 1.2 1.5× 104 1.0 15 0.019

Cont. ∆t (Nx,Ny) (∆xmin,∆ymin) (∆xmax,∆ymax) (σx, σy)

A 1/1920 (480, 480) (0.004, 0.000625) (0.08, 0.05) (0.00625, 0.00625)
B 1/800 (560, 400) (0.008, 0.001500) (0.08, 0.06) (0.0150, 0.0025)
C 1/400 (580, 420) (0.020, 0.002424) (0.10, 0.08) (0.0320, 0.0040)
D 1/800 (560, 400) (0.008, 0.001500) (0.08, 0.06) (0.0150, 0.0025)
E 1/800 (560, 400) (0.008, 0.001500) (0.08, 0.06) (0.0150, 0.0025)

Table 2. Parameters for the DNS.

∂(ρui)

∂t
+
∂(ρuiuj + pδij + τij)

∂xj
= Ap(t)γρuiF(t, x1, x2), (3.3)

∂[ρ(e+ 1
2
u2
k)]

∂t
+
∂[{ρ(e+ 1

2
u2
k) + p}uj + τjkuk + qj]

∂xj

= Ap(t)γρ(e+ 1
2
u2
k)F(t, x1, x2), (3.4)

where

F(t, x1, x2) =

[
1

ω
sin(ωt)− (x1 − x1p)u1

ω2σ1
2

cos(ωt)

] exp

[
−

2∑
j=1

(xj − xjp)2

2σj2

]
2πσ1σ2

, (3.5)

and (x1p, x2p) denotes the centre of the source. The form of the source terms is obtained
by assuming that the mean velocity is purely vertically sheared and the magnitude
of the local Mach number at the source position is small (|Mη| � 1). The width of
the Gaussian shape was set to be σ2 � σ1 � 1 so that the source can be localized
sufficiently close to the wall. Note that the first term inside the square brackets
corresponds to the free-space Green’s function, and the second term corresponds to
the leading term of the mean flow correction. As a result, the corresponding source
term of the convective wave equation yields

D

Dt

[
D2Π

Dt2
− ∂

∂xj

(
a2 ∂Π

∂xj

)]
+ 2

∂uk

∂xj

∂

∂xk

(
a2 ∂Π

∂xj

)

=
D

Dt

(1 + O(M2
η ))

Ap(t) exp

[
−∑ (xj − xjp)2

2σj2

]
2πσ1σ2

cos(−ωt)

 . (3.6)

Therefore, in the limit of σ1, σ2 → 0, the right-hand side of (3.6) becomes a delta
function, namely (D/Dt)[Apδ(x − xp) cos(−ωt)]. In computations the coefficient Ap
was set to be Ap(t) = 0.005[1 + erf((t− t1)/σt)]/2, so that spurious high-frequency
waves can be suppressed, where σt = π/ω and t1 = 2π/ω.

To measure the directivity of the pressure amplitude, 60 observer points were
distributed on an upper half-circle nearly every 3◦, centred at the source position with
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a radius of approximately Ro. They were located on the grid points of the DNS, and

the position errors defined by |Ro −√(x1 − x1p)2 + (x2 − x2p)2| (∼ O(
√

∆x2 + ∆y2))
were corrected in the data processing. At these points, pressure profiles were recorded
during two time periods after acoustic waves had arrived at all observer points.
Subsequently, the pressure profile at each point was transformed into the frequency
domain, and only the quantities at the forcing frequency were evaluated. In comparing
these DNS results with the low- and high-frequency asymptotes of direct waves,
corrections for viscous dissipation were included using an asymptotic formula (refer
to Appendix D for the formula). Similarly, to compare the amplitude of diffracted
waves, observer points were distributed along a straight line at y = η in x < 0, and
the same data-processing method was used.

To predict the mode shapes and amplitude of channelled waves, the Riccati forms
of the third-order wave operator (2.17) and its adjoint operator (2.24) were solved
using a shooting method based on a steady laminar boundary layer velocity profile
obtained from DNS. The predictions are compared with the DNS results in which the
channelled wave components are extracted. These numerical procedures are described
in Appendix E in detail. Some problems in the post-processing will be discussed
in § 4.2.

4. Results and discussion
4.1. Overall sound radiation patterns and direct waves

A total of five cases was simulated in DNS, and the dependence on the frequency and
the Mach number was investigated. Parameters of each case are tabulated in table 2.
In the following, the instantaneous pressure contours, the ray trajectories, and the
corresponding pressure amplitudes are presented in polar plots, where the results of
DNS are compared with the theoretical predictions for all three types of waves.

Figures 5–7 show the low-frequency case (Case A, see table 2). At lower angles
(toward downstream) except on the wall, DNS and the asymptotic expressions for
the direct waves agree very well. However, the amplitude peak appears somewhat
beyond the critical angle, and this peak tends to shift toward the higher angle side
as the distance increases. Moreover, the peak amplitude is obviously less than the
prediction of the low-frequency limit. As seen in figure 7, the low-frequency limit
predicts fairly large amplitude even beyond the critical angle. The DNS seems to
show this transition although the result is still close to the high-frequency limit.
Recall that in differentiating the phase part of the acoustic disturbance, a factor
of 2π comes out, and the actual factor becomes comparable to unity in Case A
(2πδBL/λ = 1.571). Therefore, it is conceivable that sound radiation patterns do
not follow the low-frequency limit except at extremely low-frequencies in real flows.
Such a case was not performed in this study due to its high computational cost.
Furthermore, note that the amplitude beyond the critical angle at low-frequencies is
very sensitive to the acoustic impedance Z (see the denominator in (2.7)). As seen
in figure 4, as the angle increases, the impedance substantially increases; hence, the
amplitude at a higher angle tends to be suppressed. In reality, the next-order terms
in ε would become more appreciable. In addition to direct waves, weak channelled
waves and diffracted waves can be also observed in figure 5. These waves are discussed
later.

Figures 8–10 show the intermediate-frequency case (Case B). As the frequency
increases, the peak angle approaches the critical angle. The apparent peak angle of
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Figure 5. Pressure field at low-frequency, Case A (M∞ = 0.8 and λ/δBL = 4.0). Instantaneous
pressure contours at time t ≈ 19 are shown. Contour level: 0.999p∞–1.001p∞ with intervals of
2.5× 10−4p∞. ——, the limiting ray, and ©, the points where the data were taken (at Ro ≈ 10λ) to
evaluate the amplitude (figure 7). Shaded region depicts the sponge boundary.
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Figure 6. Ray trajectories at low-frequency, Case A. The eikonal equation was solved based on
the initial velocity profile. The temperature variation was ignored.
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Figure 7. Pressure amplitude directivity at low-frequency, Case A. Pressure amplitude normalized

by
√
Ro (observer position Ro ≈ 10λ) is shown in a polar plot: −−−, low-frequency limit of direct

waves; ——, high-frequency limit of direct waves; · · ·, high-frequency limit of diffracted waves;
− · − · −, channelled waves; ©, DNS result corresponding to figure 5. (After time t = 17, pressure
histories were recorded during two time periods at 60 observer points.)
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Figure 8. Pressure field at intermediate frequency, Case B (M∞ = 0.8 and λ/δBL = 1.0). Instan-
taneous pressure contours at time t ≈ 26 are shown. Contour level and notation are the same as
figure 5. The data were taken at Ro ≈ 15λ to evaluate the amplitude (figure 10).
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Figure 9. Ray trajectories at intermediate frequency, Case B. The procedure is the same as
figure 6.
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Figure 10. Pressure amplitude directivity at intermediate frequency, Case B. Pressure amplitude

normalized by
√
Ro (observer position Ro ≈ 15λ) is shown in a polar plot. Notation is the same as

figure 7. Pressure histories were recorded after time t = 24.
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DNS in figure 10 is greater than the critical angle since the boundary layer has a finite
thickness. Moreover, the peak amplitude is smaller than the theoretical prediction;
nonetheless, the nature of the directivity pattern is close to the high-frequency limit.
Note that the prediction of diffracted waves is based on a far-field asymptote which
agrees better as the distance from the limiting ray becomes larger. Hence, the results
for diffracted waves obtained from DNS do not follow the high-frequency limit near
the critical angle.

Figures 11–13 show the high-frequency case (Case C). The computational domain
is not large enough to evaluate the far-field asymptotes, but the radiation pattern
of direct waves is very similar to the intermediate-frequency case (Case B). Since
the boundary layer thickness is more appreciable, the structure of channelled waves
becomes irregular compared with the previous cases (Cases A and B). Furthermore,
diffracted waves become more noticeable as the frequency increases, and their radia-
tion patterns clearly appear as general plane waves.

To observe the Mach number dependence, two additional Mach number cases
(M∞ = 0.3 in Case D and M∞ = 1.2 in Case E at the intermediate frequency) were
simulated. The results of Case D are presented in figures 14–16. As the free-stream
Mach number decreases, the critical angle becomes higher and the peak amplitude
decreases. The results for DNS and the high-frequency limit agree fairly well except
very close to the critical angle. Near the critical angle, the directivity obtained from
DNS does not form a sharp peak. This phenomenon commonly occurs in Cases B,
C and E. The behaviour near the critical angle is discussed later.

In contrast, the results of the high Mach number case (Case E) are presented in
figures 17–19. One can see that a large amount of acoustic energy is focused near the
critical angle. Figure 19 shows that the low- and high-frequency limits nearly collapse
to the critical angle and the peak becomes very sharp compared with the lower Mach
number cases. Here, the limiting angle defined by the low-frequency limit is identical
to the Mach angle (arcsin(1/M∞)). As described in Appendix A, the critical angle of
the high-frequency limit also asymptotically approaches the Mach angle as the Mach
number increases.

In this study, since the size of the computational domain is limited, the peak angle
of the DNS results and the asymptotic limits do not perfectly coincide. Although the
distance of the observer positions relative to the acoustic wavelength was taken to be
sufficiently large (Ro � λ), the effect of the boundary layer thickness was still large,
particularly in Case C (Ro = 7δBL). Therefore, the peak amplitude appears somewhat
beyond the critical angle in DNS. Figure 20 depicts the directivity patterns at different
distances of the observer positions. It demonstrates that the peak approaches the criti-
cal angle as the distance from the source becomes longer. If one could extend the com-
putational domain, the DNS data should agree better with the high-frequency limit.

Another discrepancy in these comparisons is the behaviour near the critical angle.
All polar plots commonly show that the sharp peak predicted by the high-frequency
limit is considerably smeared and the peak amplitude tends to be smaller in the
DNS. Recall that the wavenumber in the vertical direction can be expressed by

k̄y =
√
n̄2(y)− k̄2

x, which approaches zero near the wall for the rays propagating close

to the critical angle. Therefore, it is considered that the high-frequency limit fails in
this region. As a result, the amplitude near the critical angle becomes smaller than
the theoretical prediction. Note that the viscous effect hardly affects this roundness
discrepancy: figure 21 shows that even if the Reynolds number is doubled, the
directivity pattern remains very similar.
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Figure 11. Pressure field at high-frequency, Case C (M∞ = 0.8 and λ/δBL = 0.25). Instantaneous
pressure contours at time t ≈ 40 are shown. Contour level and notation are the same as figure 5.
The data were taken at Ro ≈ 28λ to evaluate the amplitude (figure 13).
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Figure 12. Ray trajectories at high-frequency, Case C. The procedure is the same as figure 6.
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Figure 13. Pressure amplitude directivity at high-frequency, Case C. Pressure amplitude normalized

by
√
Ro (observer position Ro ≈ 28λ) is shown in a polar plot. Notation is the same as figure 7.

Pressure histories were recorded after time t = 38.
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Figure 14. Pressure field at low Mach number, Case D (M∞ = 0.3 and λ/δBL = 1.0). Instantaneous
pressure contours at time t ≈ 26 are shown. Contour level and notation are the same as figure 5.
The data were taken at Ro ≈ 15λ to evaluate the amplitude (figure 16).
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Figure 15. Ray trajectories at low Mach number, Case D. The procedure is the same as figure 6.

0 0.4 0.8 1.2 1.6–1.6 –1.2 –0.4–0.8

1.6

1.2

0.8

0.4

Figure 16. Pressure amplitude directivity at low Mach number, Case D. Pressure amplitude

normalized by
√
Ro (observer position Ro ≈ 15λ) is shown in a polar plot. Notation is the same as

figure 7. Pressure histories were recorded after time t = 24.
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Figure 17. Pressure field at high Mach number, Case E (M∞ = 1.2 and λ/δBL = 1.0). Instantaneous
pressure contours at time t ≈ 26 are shown. Contour level and notation are the same as figure 5.
The data were taken at Ro ≈ 15λ to evaluate the amplitude (figure 19).
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Figure 18. Ray trajectories at high Mach number, Case E. The procedure is the same as figure 6.
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Figure 19. Pressure amplitude directivity at high Mach number, Case E. Pressure amplitude

normalized by
√
Ro (observer position Ro ≈ 15λ) is shown in a polar plot. Notation is the same as

figure 7. Pressure histories were recorded after time t = 24.
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Figure 20. Directivity patterns at different observer distances in Case C. Flow conditions are the
same as figure 13. Symbols are computed by DNS: •, Ro = 20λ; +, Ro = 24λ; and ©, Ro = 28λ.
−−− denotes the direction of the peak angle in the high-frequency limit. The rest of the notation
is the same as figure 7.
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Figure 21. Directivity patterns at two different Reynolds numbers (M∞ = 0.3). Flow conditions in
one case (denoted by © for DNS and thicker lines for the asymptotes) are the same as figure 16
(Case D, Re = 3750). The other case (denoted by ∗ for DNS and thiner lines for the asymptotes) is
the same flow conditions except that the Reynolds number is doubled (Re = 7500). The rest of the
notation is similar to figure 16.

4.2. Channelled waves and diffracted waves

Figures 22a–e compare the amplitude of channelled waves between the DNS and
the theoretical predictions. As mentioned before, the numerical integration indicates
that only one normal mode with a purely real kx+

exists for each case under the flow
conditions studied here. The results show that a single normal mode predicts the
eigenmode shape and its amplitude fairly well. These shapes become thinner as the
frequency increases. They also become thinner and their peaks become higher as
the Mach number increases (although figures 22b and 22e depict very similar mode
shapes).

As mentioned in Appendix E, direct waves penetrating the boundary layer cause
interference with channelled waves, and this phenomenon makes it difficult to extract
the eigenmode shape of channelled waves. In fact, due to the overestimate of the cross-



156 T. Suzuki and S. K. Lele

0 0.4 1.6 2.00.8 1.2

0.2

0.4

0.6

0.8

1.0

(×10–3)
(a)

δBL

| p̂|

0 0.4 1.6 2.00.8 1.2

0.4

0.8

1.2

1.6

2.0

(×10–3)
(b)

δBL

0 0.5 2.5 3.01.5 2.0

0.5

1.0

1.5

(×10–3)
(c)

0.5δBL

| p̂|

0 0.4 1.6 2.00.8 1.2

(×10–3)
(d)

δBL

1.0

0.5

1.0

1.5

0 0.4 1.6 2.00.8 1.2

0.4

0.8

1.2

1.6

2.0

(×10–3)
(e)

δBL

| p̂|

y /λ

y /λ

Figure 22. Pressure amplitude of channelled waves (a) at low-frequency, Case A (M∞ = 0.8 and
λ/δBL = 4.0); (b) at intermediate frequency Case B (M∞ = 0.8, λ/δBL = 1.0; (c) at high frequency
Case C (M∞ = 0.8, λ/δBL = 0.25); (d ) at low Mach number, Case D (M∞ = 0.3, λ/δBL = 1.0); (e) at
high Mach number, Case E (M∞ = 1.2, λ/δBL = 1.0) ——–, Theoretical prediction; ©, DNS result;•, the region in which the amplitude of channelled waves cannot be evaluated by DNS.

correlation terms in (E 8), the eigenmode shapes away from the wall become negative
(denoted by •). Table 3 compares the wavenumbers of direct waves and channelled
waves, showing that they are very similar at the low-frequency (Case A). Therefore, the
interference pattern cannot be accurately captured in the computational domain, and
the normal mode shape was calculated by simply taking an average in x ∈ [3.6, 10.4].
On the other hand, the intermediate-frequency cases give reasonable length periods
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Case k̄CHx+
k̄DRxφ=0

Predicted period Period from DNS

A 0.590 0.556 29.4 Not measurable
B 0.782 0.556 4.42 4.8
C 0.916 0.556 2.78 (∼ 4.0)
D 0.892 0.769 8.13 8.1
E 0.710 0.455 3.92 4.5

Table 3. Comparison of several properties for channelled waves. k̄CHx+
denotes the wavenumber of

channelled waves computed using (E 1), and k̄DRxφ=0
that of direct waves calculated setting φ = 0 in

(2.8). The fourth column ‘Predicted period’ denotes one length of period for the interference pattern
given by 1/(k̄CHx+

− k̄DRxφ=0
), and the fifth column denotes that from the DNS data measuring from

peak to peak.
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Figure 23. Fourier coefficients of the pressure amplitude square in the wavenumber domain in
Case C. Absolute values of Fourier coefficients in the sampled interval (in the x-direction) are
plotted. The zeroth mode corresponds to the constant (auto-correlations in (E 8)), and the second
(lower mode) and the fourth (higher mode) modes indicate that there exist at least two interference
patterns in this case.

(two periods were sampled for Cases B and E, and one for Case D); as a result, the
theoretical predictions and the DNS results agree fairly well. At the high frequency
(Case C), the amplitude in the wavenumber domain indicates that at least one more
mode should exist (see figure 23). Referring to their wavenumbers in table 3, the
lower peak (second component in figure 23) seems to be an uncaptured interference
mode. Remember that only the mode with a purely real kx+

is analysed in this study
(although the authors could not find any other normal mode with a complex kx+

),
and the governing equation is assumed to be inviscid. It is conceivable that another
normal mode that is slowly decaying, such as a viscous mode, is contaminated in the
channelled waves; therefore, the theoretical prediction does not perfectly agree with
DNS in the high-frequency case, as seen in figure 22c.

One can see that the interference patterns in the intermediate-frequency cases
(Cases B, D and E) are generated by direct waves and channelled waves, but the
length of periods do not exactly coincide with the theoretical predictions. If one
calculates the periods of the interference patterns based on the waves-numbers of
direct and channelled waves (see table 3), the theoretical predictions tend to be shorter
than the DNS results. Since, within the boundary layer, direct waves are convected
slower than in the free stream, their wavelength in the x-direction near the wall is
compressed downstream. Remember that the wavenumbers of direct waves calculated
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Figure 24. Pressure amplitude of diffracted waves at low-frequency, Case A (M∞ = 0.8 and
λ/δBL = 4.0); (b) intermediate frequency, Case B (M∞ = 0.8, λ/δBL = 1.0); (c) high frequency,
Case C (M∞ = 0.8, λ/δBL = 0.25); (d ) low Mach number, Case D (M∞ = 0.3, λ/δBL = 1.0); (e) high
Mach number, Case E (M∞ = 1.2, λ/δBL = 1.0). Asymptotic formulas: ——–, Z• = 0; − − −,
Z• → ∞; ©, DNS result.

in table 3 assume the boundary layer thickness to be infinitely thin. Thus, the periods
of the interference patterns tend to be longer in the DNS.

Figure 24 compares the pressure amplitude of diffracted waves between the DNS
results and the theoretical predictions. Figure 24(a) depicts that at the low frequency
(Case A), the DNS result becomes considerably larger than the analytical predictions
based on both Neumann (Z = 0) and Dirichlet (|Z| → ∞) boundary conditions.
But, as figures 24 b, c (Cases B and C) show, when the frequency increases (with a



Green’s functions for a source in a boundary layer 159

Case Asymptotic formula Numerical integration

A −1.258− i 0.447 −1.282− i 0.347
B −1.102− i 0.177 −1.109− i 0.161
C −1.041− i 0.070 −1.042− i 0.068
D −1.053− i 0.092 Does not converge
E −1.134− i 0.232 −1.145− i 0.204

Table 4. Comparison of the wavenumber k̄x between the asymptotic formula (2.41) and the
numerical integration (E 1).

fixed Mach number), the DNS results agree fairly well with the predictions based on
the Neumann boundary condition. Since the acoustic impedance becomes finite on a
viscous wall as discussed in § 2.5, the decay rates of DNS are expected to be somewhere
in between these two asymptotes. However, the actual results are even slightly slower
than the prediction based on the Neumann boundary condition. Therefore, it is
deduced that at low frequencies, the decay rate is slower than that predicted by the
high-frequency asymptotic formula (2.41). Accordingly, this frequency dependence
totally overcomes the effect of non-zero acoustic impedance.

This point is clarified by comparing the complex k̄x− obtained from the high-
frequency asymptote (2.41) and from the numerical integration (E 1) (see Appendix E).
These values are shown in table 4. Based on the asymptotic formula, the complex
wavenumbers k̄x are predicted quite well; however, in Case A the decay rate (−Im[k̄x])
is over-predicted compared with the numerical integration. Therefore, it is fair to
conclude that the actual decay rate of the diffracted waves tends to become slower
than the high-frequency asymptote as the frequency decreases.

In terms of the Mach number dependence, the series of figures 24 b, d, e shows that as
the Mach number increases, the decay rate of diffracted waves becomes greater. In the
supersonic case (figure 24e), the DNS result deviates considerably from the theoretical
prediction although there is no difference in the theoretical formula compared to the
subsonic case: the amplitude part becomes far smaller, and the decay rate becomes
slightly slower. In fact, table 4 demonstrates that the high-frequency asymptotic
formula over-estimates the decay rate in Case E. It should be emphasized that when
(2.41) is derived, the interval of the integration y ∈ [y∗, 0] is assumed much longer
than the acoustic wavelength and n̄2− k̄2

x to be small due to the high-frequency limit,
and the parabolic fitting is used. However, as n̄2− k̄2

x increases, its variation during the
interval needs to be precisely calculated. Note that knowing n̄0 = 1, the deviation from
k̄x = −1 indicates the magnitude of the second term in (2.41). Thus, the asymptotic
expressions for Case E as well as Case A provide worse estimates of the decay rate.

Finally, to provide an overview of the modes of channelled and diffracted waves, the
normalized wavenumbers, k̄x, are plotted in the complex plane. Figures 25 and 26 rep-
resent the frequency and Mach number dependence of the wavenumber, respectively.
These values were computed based on numerical integration (E 1), and the values
at the high-frequency limit for diffracted waves (2.41) are also shown for reference.
Figure 25 indicates that as the frequency becomes higher, the wavenumber of chan-
nelled waves approaches k̄x = 1, while that of diffracted waves approaches k̄x = −1,
decreasing its imaginary part. Likewise, figure 26 indicates that as the Mach number
decreases, a very similar tendency appears. As expected, as the frequency increases
or the Mach number decreases, the effect of the mean flow asymptotically becomes
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Figure 25. Frequency dependence of the wavenumber. Complex wavenumbers k̄x of channelled
waves and the first mode of diffracted waves are plotted.©, computed based on numerical integration
(E 1), and •, calculated using the high-frequency asymptotic formula (2.41).
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Figure 26. Mach number dependence of the wavenumber. Notation is the same as figure 25.
The wavenumber of diffracted waves for M = 0.3 could not be computed based on numerical
integration.

negligible. Furthermore, it is consistently illustrated that the analytical predictions of
diffracted waves deteriorate as the imaginary part of k̄x increases.

Note that although these comparisons show fairly reasonable results, the accuracy
of the acoustic impedance in the DNS is uncertain. From table 2, the number of the
grid points within the length scale of the vorticity (or entropy) mode is about 3–6 (see
figure 27, for example), which is not sufficient to resolve these disturbance scales. To
accurately assess the acoustic impedance model, finer mesh spacing may be necessary,
which is able to resolve the mode coupling on a viscous wall as described in § 2.5.

5. Conclusions
Regarding direct waves, the high-frequency asymptotic Green’s function approx-

imates the DNS results best except for the low-frequency case (λ/δBL = 4.0 and
M∞ = 0.8). At a low frequency the amplitude peak appears somewhat beyond the
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critical angle. To simulate the radiation pattern of the low-frequency limit in DNS,
the forcing frequency needs to be further decreased.

To analyse channelled waves, an adjoint operator of the transformed third-order
convective wave equation is introduced by imposing the mixed-type boundary con-
dition, and the corresponding inner product is defined. Based on the normal mode
decomposition, the shapes and magnitudes of the eigenmodes in DNS are successfully
predicted. Note that this method is potentially applicable to various types of acoustic
problems in two-dimensional transversely sheared flows.

In the shadow zone, diffracted waves are formulated in the high-frequency limit,
and the comparison with DNS agrees fairly well based on the Neumann boundary
condition. The results also show that as the frequency decreases or the Mach number
increases, the actual decay rate of diffracted waves becomes slower than the high-
frequency limit.

Thus, the expressions for Green’s functions in a boundary layer are well established,
and they should improve the physical understanding of sound radiation from noise
sources near the wall. The extension of these formulas to multipoles and moving
sources for practical use is relatively straightforward (refer to Suzuki 2001). In terms
of far-field noise radiation, the high-frequency limit of direct waves should be able
to predict the directivity fairly well. However, the comparison with the DNS results
implies that the amplitude may be over-estimated, especially near the peak angle.
Therefore, more detailed analysis near the critical angle may be required for accurate
prediction. Regarding the interior noise, the DNS results indicate that channelled
waves should be dominant inside the boundary layer, particularly at high-frequencies;
moreover, their decay rate is slower than that of direct waves. This implies that the
pressure fluctuation on the wall is strongly influenced by the upstream disturbances.
Thus, one may need to include a large domain in the upstream direction to predict
the interior noise due to turbulence near the wall.

It should be mentioned that these analyses are based on laminar boundary layer
profiles. However, the asymptotic formulas (low- and high-frequency direct waves and
high-frequency diffracted waves) are independent of the mean velocity profile. There-
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fore, these formulas are expected to be valid even for turbulent velocity profiles as
long as the turbulent length scale is reasonably smaller than the acoustic wavelength.
(Note that since the boundary layer thickness in this study is defined based on the
velocity gradient on the wall, it becomes thinner as the velocity gradient on the wall
becomes steeper.) Of course, when the acoustic wavelength becomes comparable with
the turbulent length scale, such as the eddy scale, significant sound scattering should
occur and the theoretical prediction would be no longer valid. Regarding channelled
waves, the eigenmode shape becomes broader as the frequency decreases; therefore,
it is similarly expected that the mean velocity profile of turbulent flows should give
a reasonable estimate for channelled waves at low-frequencies. Likewise, the effects
of the spreading rate of the boundary layer also need to be investigated for practical
use.

The authors would like to thank Professor Joseph B. Keller for many useful sug-
gestions. We gratefully acknowledge the financial support by NASA Ames Research
Center (grant number NCC-255 and NAG 2-1373).

Appendix A. Critical angle
As described in § 2.2, direct waves cannot propagate beyond the critical angle in

the high-frequency limit. In the expressions for the high-frequency Green’s functions
(2.14) or (2.15), one of the terms in the denominator, ((n̄?η)

2 − (k̄?x)
2)1/4 or ((n̄?η)

2 −
(k̄?x)

2 − (k̄?z )
2)1/4, can vanish. When the source is located very close to the wall, one

can assume n̄η = 1. Hence, the denominator vanishes when

k̄x =
1

1−M2∞

−M∞ +
cosφ√

1−M2∞ sin2 φ

 ≈ 1. (A 1)

This gives

φcr =


π − arcsin

[√
1− (M2∞ +M∞ − 1)2

1−M2∞(M2∞ +M∞ − 1)2

]
, 0 6M < M

high
90

arcsin

[√
1− (M2∞ +M∞ − 1)2

1−M2∞(M2∞ +M∞ − 1)2

]
, M

high
90 6M.

(A 2)

Here, Mhigh
90 = (

√
5− 1)/2 ≈ 0.618. Note when M∞ → ∞, the critical angle asymptoti-

cally reaches

lim
M∞→∞

φcr = arcsin

(
1

M∞

)
, (A 3)

which is identical to the Mach angle. Equation (A 2) was used to draw the lines for
the critical angles in the figures showing instantaneous pressure contours.

Appendix B. Normal mode decomposition for the temporal problem
As discussed in § 2.3 for channelled waves, the conservation form (2.26) includes

an inconvenient boundary term for a temporal problem. In general, one substitutes
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arbitrary disturbances into Πm and a certain known normal mode into Π†n , so that
the nth mode can be extracted. However, the boundary term(

∂Πm

∂t

∂Π†n
∂t
− 3

dM

dy

∂Π†n
∂x

)
y=0

remains if one tries to solve a temporal problem using (2.26). To produce a suitable
boundary term, modify the ‘inner product’ by adding a boundary term to it. Thus,
(2.26) can be rewritten as follows:∫ ∞

0

Π†n [L(ωm, kxm)Πm] dy +

∫ ∞
0

Πm[L†(ωn, kxn)Π†n ] dy −Πm

(
∂2Π†n
∂t∂y

+3
dM

dy

∂Π†n
∂x

)
y=0

=
∂

∂t

[∫ ∞
0

Jt(Π
†
n , Πm) dy −

(
Πm

∂Π†n
∂y

)
y=0

]
+

∂

∂x

∫ ∞
0

Jx(Π
†
n , Πm) dy, (B 1)

where Πm, Π†n ,L,L†, Jt, and Jx are as defined in § 2.3. As seen in (B 1), the boundary
condition for Π†n is still the same as (2.25),

∂Π†n
∂y

= 3
kx

ωn

dM

dy
Π†n .

Thus, in the temporal problem only the first term on the right-hand side remains,

i(ωn − ωm)

[∫ ∞
0

Jt(Π
†
n , Πm) dy −

(
Πm

∂Π†n
∂y

)
y=0

]
= 0, (B 2)

and the problem can be solved using the same method as described in § 2.3.

Appendix C. Derivation of the viscous boundary conditions with a high
free-stream Mach number

To derive appropriate viscous boundary conditions with a high free-stream Mach
number, first the derivation of the viscous boundary conditions with no mean flow is
revisited (refer to Pierce 1989); subsequently, these boundary conditions are extended
to a highly sheared mean flow using an asymptotic analysis. Recall that it is assumed

that Re
−1/2
ac � min{|λ/δBL|, |δBL/λ|} in this derivation.

To find the solution for each disturbance mode, follow the derivation of the so-
called ‘Kirchhoff’s dispersion relation’ (Kirchhoff 1868) retaining the mean velocity in
the x-direction (denoted by Ux). Accordingly, the linearized Navier–Stokes equations
can be rewritten as

Dρ̂

Dt
+ ρ(∇ · û) = 0, (C 1)

ρ

(
Dûx
Dt

+ ûy
∂Ux

∂y

)
+
∂p̂

∂x
= µ

[
∆ûx +

1

3

∂

∂x
(∇ · û)

]
, (C 2)

ρ
Dûy
Dt

+
∂p̂

∂y
= µ

[
∆ûy +

1

3

∂

∂y
(∇ · û)

]
, (C 3)

Dŝ

Dt
= 2

µ

ρT

∂Ux

∂y

(
∂ûx

∂y
+
∂ûy

∂x

)
+

κ

ρCp
∆

(
ŝ+

p̂

ρT

)
, (C 4)
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where D/Dt ≡ ∂/∂t+Ux∂/∂x, and quantities with a hat represent small disturbances.
Here, the ideal gas law is used, and the mean velocity is assumed to be parallel and
purely transversely sheared. But the rest of the mean quantities, such as p, ρ, T , µ,
etc., are assumed constant everywhere. Furthermore, assume that each quantity can
be expressed in the form ∼ f(y) e−i(ωt−kxx). After some algebra, (C 1)–(C 4) can be
rewritten as the following equation system:

− a
2

Ω2
∆ŝ+ i

Cp

Ω

[
1− i

4

3

µ

ρΩ
∆

]
(∇ · û)− a2

Ω2
∆

[
−i
Cp

Ω
(∇ · û)

]
− i

2kxCp
Ω2

∂Ux

∂y
ûy = 0, (C 5)

∂

∂y
ŝ+

∂

∂y

[
−i
Cp

Ω
(∇ · û)

]
− 1

3

µCp

ρa2

∂

∂y
(∇ · û)− i

ΩCp

a2

[
1− i

µ

ρΩ
∆

]
ûy = 0, (C 6)

[
1− i

γκ

ρCpΩ
∆

]
ŝ− i

(γ − 1)κ

ρΩCp
∆

[
−i
Cp

Ω
(∇ · û)

]
−2

µ

kxρΩT

∂Ux

∂y

[
∂

∂y
(∇ · û)− ∆ûy − 2k2

xûy

]
= 0, (C 7)

where Ω ≡ ω − kxUx.
To estimate the order of each term, first consider a quiescent flow; namely Ux ≡

0. In this case, simply follow Pierce (1989): dUx/dy = 0 and Ω is replaced by
ω. Accordingly, ∂/∂y can be simply replaced by iky . By defining εµ ≡ iµω/ρa2,

εκ ≡ iκω/ρa2Cp, X ≡ a2|k|2/ω2, Y ≡ iaky/ω, d̂ ≡ −iCp/ω(∇ · û), and ν̂y ≡ −iCp/aûy ,
system (C 5)–(C 7) in a quiescent flow can be expressed as

(1 + γεκX )ŝ+ (γ − 1)εκX d̂ = 0, (C 8)

X ŝ− (1− X + 4
3
εµX )d̂ = 0, (C 9)

Y ŝ+ (1− 1
3
εµ)Y d̂+ (1 + εµX )ν̂y = 0. (C 10)

When this simultaneous equation system has a non-trivial solution, its determinant
must be zero; namely

(1 + εµX )[εκ(
4
3
γεµ − 1)X 2 − (1− 4

3
εµ − γεκ)X + 1] = 0. (C 11)

This is called ‘Kirchhoff’s dispersion relation’ (Kirchhoff 1868). One obvious solution
to (C 11) is X = −1/εµ, which is referred to as the ‘vorticity mode’. The other
two solutions can be approximately computed assuming |εµ|, |εκ| � 1 (the orders
of εµ and εκ are the same, denoted by ε in this section, which is different from
the one defined in § 2.1): X ≈ −1/εκ, which is called the ‘entropy mode’; and
X ≈ 1, the ‘acoustic mode’. Notice that two dispersion relations, for the vorticity and
entropy modes, are the same order (X = O(ε−1)), and that of the acoustic mode is
X = O(1).

Next, extend this previous theory to a shear flow. Notice that ∂/∂y and Ω do not
commute in such a case. To rewrite the equation system (C 5)–(C 7), the following
relations are useful:

−i
Cp

Ω
Y (∇ · û) = (Y − Γ )d̂, (C 12)

−i
Cp

Ω
X (∇ · û) = (X + 2ΓY + Σ)d̂, (C 13)
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where

X ≡ − a
2

Ω2
∆, Y ≡ a

Ω

∂

∂y
, Γ ≡ − a

Ω2

∂Ω

∂y
, Σ ≡ − a

2

Ω3

∂2Ω

∂y2
, d̂ ≡ −i

Cp

Ω
(∇ · û).

Note that the operators X and Y are not independent of each other. Thus, the
equation system in a shear flow can be written as

(1 + γεκX )ŝ+ [(γ − 1)εκX + 2εµΓχ
−1(Y + Γ )]d̂+ 2εµΓχ

−1(X − 2χ)ν̂y = 0, (C 14)

X ŝ− (1− X + 4
3
εµX + 8

3
εµΓY + 4

3
εµΣ)d̂+ 2Γ ν̂y = 0, (C 15)

Y ŝ+ (Y − 1
3
εµY + 1

3
εµΓ )d̂+ (1 + εµX )ν̂y = 0, (C 16)

where χ ≡ a2k2
x/Ω

2 and ν̂y ≡ −i(Cp/a)ûy . Here, consider the dimension of each term.

Γ ∼
∣∣∣∣ M∞a2

ω2λδBL

∣∣∣∣ ∼ M∞λ
δBL

,

which is common in all modes. In this analysis, assume both M = O(1) and λ/δBL =
O(1); accordingly, Γ = O(1). Likewise, χ = O(1) and Σ = O(1). In the acoustic mode,
since X = O(1), then Y = O(1) from the previous analysis; hence, one should expand
each term in terms of ε to asymptotically solve this equation system. However, in
the vorticity or entropy mode, X = O(ε−1) leads Y = O(ε−1/2). Therefore, one should
expand each term in terms of ε1/2 in these modes.

First, to solve the acoustic mode, expand each term as follows:

ŝ ≈ ŝ0 +εŝ1 +ε2ŝ2 +· · · , d̂ ≈ d̂0 +εd̂1 +ε2d̂2 +· · · , ν̂y ≈ ν̂0 +εν̂1 +ε2ν̂2 +· · · , (C 17)

and

X ≈ X 0 + εX 1 + ε2X 2 + · · · , Y ≈ Y 0 + εY 1 + ε2Y 2 + · · · , (C 18)

The leading terms of the equations (C 14)–(C 16) then consist of

ŝ0 = 0, (C 19)

X 0ŝ0 − (1− X 0)d̂0 + 2Γ ν̂0 = 0, (C 20)

Y 0ŝ0 + Y 0d̂0 + ν̂0 = 0. (C 21)

This equation system yields the following dispersion relation:

(X 0 − 1)d̂0 − 2ΓY 0d̂0 = 0, (C 22)

ŝ0 = 0 and ν̂0 = −Y 0d̂0. (C 23)

Now, the second lowest terms of the acoustic mode provide O(ε), which is smaller than
the second lowest terms of the vorticity or entropy modes (= O(ε1/2)). Accordingly, the
rest of the terms in the acoustic mode (associated with viscous and heat conduction
effects) are ignored here. As a result, the following conditions are satisfied:

∆d̂+ 2
kx∂Ux/∂y

Ω

∂

∂y
d̂+

Ω2

a2
d̂ ≈ 0, (C 24)

ŝac ≈ 0, T̂
ac ∼ p̂ac

ρCp
, ûacy ≈ −i

1

Ωρ

∂p̂ac

∂y
. (C 25)

In fact, (C 24) is identical to the third-order wave operator shown in (2.2).



166 T. Suzuki and S. K. Lele

On the other hand, to derive the relationships for the vorticity and entropy modes,
each term must be expanded in terms of ε1/2: ŝ ≈ ŝ0 + ε1/2ŝ1 + εŝ2 + · · ·; X ≈
ε−1X 0 + ε−1/2X 1 +X 2 + · · ·; Y ≈ ε−1/2Y 0 +Y 1 + ε1/2Y 2 + · · ·; and so on. The leading
terms yield

[1 + γ(εκ/ε)X 0]ŝ0 + (γ − 1)(εκ/ε)X 0d̂0 + 2(εµ/ε)Γχ
−1X 0ν̂0 = 0, (C 26)

X 0ŝ0 + X 0d̂0 = 0, (C 27)

Y 0ŝ0 + Y 0d̂0 = 0. (C 28)

As observed in a quiescent flow, the solution corresponding to the vorticity mode is

ŝ0 + d̂0 = 0; hence, [1 + (εκ/ε)X 0]d̂0 = 2(εµ/ε)Γχ
−1X 0ν̂0, while the solution to the

entropy mode is ŝ0 + d̂0 = 0, ν̂0 = 0, and X 0 = −ε/εκ. Subsequently, the second lowest
terms in the vorticity mode consist of

[1 + γ(εκ/ε)X 0]ŝ1 + (γ − 1)(εκ/ε)X 0d̂1 + [−(εκ/ε)X 1 + 2(εµ/ε)Γχ
−1Y 0]d̂0

+2(εµ/ε)Γχ
−1X 0ν̂1 + 2(εµ/ε)Γχ

−1X 1ν̂0 = 0, (C 29)

X 0ŝ1 + X 0d̂1 = 0, (C 30)

Y 0ŝ1 + Y 0d̂1 + [1 + (εµ/ε)X 0]ν̂0 = 0. (C 31)

Hence, (C 30) and (C 31) derive ŝ1 + d̂1 = 0 and X 0 = −ε/εµ. As a result, the leading
order in the vorticity mode yields

ŝ0 + d̂0 = 0, [1− (εκ/εµ)]d̂0 + 2Γχ−1ν̂0 = 0. (C 32)

They can be rewritten using the physical quantities as follows:

p̂vor ≈ 0, T̂ vor ≈ i
T

Ω
(∇ · ûvor) ≈ i

T

a
Λûvory , (C 33)

where

Λ =
2Pr

1− Pr
1

akx

dUx

dy

and p̂vor is obtained from ŝ vor + d̂vor ≈ 0 and continuity.
Similarly, the second lowest terms in the entropy mode consist of

(1− γ)ŝ1 − (γ − 1)d̂1 + [−(εκ/ε)X 1 + 2(εµ/ε)Γχ
−1Y 0]d̂0 − 2

εµ

εκ
Γχ−1ν̂1 = 0, (C 34)

− 1

εκ
(ŝ1 + d̂1) = 0, (C 35)

Y 0ŝ1 + Y 0d̂1 = 0. (C 36)

Hence, (C 35) and (C 36) also give ŝ1 + d̂1 = 0. However, (C 34) gives only −εκX 1d̂0 +

2εµΓχ
−1[Y 0d̂0 − (ε/εκ)ν̂1] = 0. Notice that ν̂1 appears to be the leading order despite

ν̂0 = 0. Expanding further higher terms for the entropy mode to close the leading

order, one can eventually obtain ν̂1 = (εκ/ε)Y 0d̂0; consequently, the effective leading
order yields

ŝ0 + d̂0 = 0, (εκ/ε)Y 0d̂0 − ν̂1 = 0. (C 37)
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Likewise, the conditions of the entropy mode can be expressed by

p̂ent ≈ 0, T̂ ent ≈ i
T

Ω
(∇ · ûent), ûenty ≈ κ

ρCpT

∂T̂ ent

∂y
. (C 38)

Comparing the solutions at the leading order between a quiescent and a shear flow,
one can notice that a temperature disturbance as well as that of entropy are invoked in
the vorticity mode. In addition, the dispersion relation of the acoustic mode changes
to the convective wave operator. On the other hand, the entropy mode remains the
same.

To further simplify these relations, use the following approximation. Knowing
Y = O(ε−1/2), the orders of the transverse and horizontal derivatives in the vorticity
and entropy modes can be estimated as follows:

∂

∂y
∼ Ω

a
ε−1/2 � Ω

a
∼ ∂

∂x
. (C 39)

Therefore, the ∂2/∂x2 term included in X (= −(a2/Ω2)∆) can be ignored. As shown in
Pierce (1989), define the characteristic length scales of the vorticity and entropy modes
as lvor ≡

√
2µ/ωρ and lent ≡

√
2κ/ωρCp (= lvor/P r

1/2), respectively. Consequently,
the dispersion relation of each mode can be replaced by the following transverse
derivative: (

∂

∂y

)vor
≈ −(1− i)/lvor,

(
∂

∂y

)ent
≈ −(1− i)/lent. (C 40)

Now, the boundary conditions for a non-slip wall and an isothermal or adiabatic
wall are expressed as

ûac + ûvor + ûent = 0, (C 41)

T̂ ac + T̂ vor + T̂ ent = 0, or
∂T̂ ac

∂y
+
∂T̂ vor

∂y
+
∂T̂ ent

∂y
= 0. (C 42)

Assuming |∂/∂y| � |∂/∂x|, differentiate (C 41) in the horizontal direction; subse-
quently, substitute (C 33) and (C 38), and simplify it using (C 24), (C 25), and (C 40):

∇‖ · (ûac‖ + ûvor‖ + ûent‖ )

≈ −∂û
ac
y

∂y
+ i

Ω

ρ
ρ̂ac +

(
1− i

lvor
ûvory − i

Ω

T
T̂ vor

)
+

(
1− i

lvor
ûenty − i

Ω

T
T̂ ent

)

≈ −i
1

ρΩ

(
kx

Ω

∂Ux

∂y

∂p̂ac

∂y
− k2

xp̂
ac

)
− i

1− i

lvor

(
a

Λ
+

1 + i

2
lvorΩ

)
T̂ vor

T
. (C 43)

On the other hand, the vertical component of the velocity becomes

ûacy + ûvory + ûenty ≈ −i
1

ρΩ

∂p̂ac

∂y
− i

a

Λ

T̂ vor

T
+

κ

ρCpT

∂T̂ ent

∂y
. (C 44)

Here, one lower-order term (O(ε)) is eliminated. For an adiabatic wall, directly
substituting (C 40) into (C 44), combining (C 43) with it, and referring to the definition
of Z in (2.4), the non-dimensional form of the acoustic impedance for an adiabatic
wall yields

Zadb
(2) ≈ −1− i

2
ωl̄ vork̄

2
x

1 + 1
2
(1 + i)ωΛl̄2ent/l̄vor

1 + 1
2
(1 + i)ωΛl̄vor(1− [(1− Pr)/2Pr]k̄2

x)
. (C 45)
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Likewise, substituting (C 40) into (C 44), the acoustic impedance for an isothermal
wall becomes

Zist
(2) ≈ −1− i

2
ω

(γ − 1)l̄ent(1 + 1
2
(1 + i)ωΛl̄vor) + l̄vork̄

2
x(1 + 1

2
(1 + i)ωΛl̄ent)

1 + 1
2
(1 + i)ω(l̄vor/k̄x)([2Pr/(1− Pr)− k̄2

x)(dM/dy)wall
. (C 46)

Here, the superscripts adb and ist denote adiabatic and isothermal, respectively.
Remember that the acoustic wavelength λ is chosen to be the length scale and the
speed of sound a to be the velocity scale to non-dimensionalize the expressions above.
Hence, for example,

l̄vor =

√
M∞
πReac

, l̄ent =

√
M∞

πPrReac
, Λ =

2Pr

1− Pr
1

ωk̄x

(
dM

dy

)
wall

,

and so on. (Also note that k̄x = ωkx where ω = 2π.) In these final results, Ω is replaced
by ω since the mean velocity on the wall is zero. As expected, when the Reynolds

number increases, the length scales, l̂vor and l̂ent, become shorter; subsequently, the
acoustic impedanceZ decreases. In particular, the shear flow correction terms Λ (and
(1/k̄x)(dM/dy)wall) become fairly small at moderate Reynolds numbers; hence, the
acoustic impedance is almost the same as that in a quiescent case. One also notices
that the acoustic impedance depends on the angle of plane waves, namely the position
of the observer. The corresponding observer angles in the far field are given by (2.8)
or (2.10) and (2.11). To compare the theoretical predictions for direct waves with the
results of DNS, the impedance for the adiabatic wall (C 45) was used for the analytic
predictions.

In three dimensions the energy equation corresponding to (C 4), accordingly, (C 7)
becomes more complicated. Hence, the modification of (C 45) or (C 46) may not be
straightforward. Nonetheless, at the leading order they should become

Zadb
(3) ∼ −1− i

2
ωl̄vor(k̄

2
x + k̄2

z), (C 47)

Zist
(3) ∼ −1− i

2
ω[(γ − 1)l̄ent + l̄vor(k̄

2
x + k̄2

z)]. (C 48)

These expressions, however, do not include the shear correction terms retained in
(C 45) and (C 46).

Appendix D. Viscous dissipation in a uniform flow
Since the Reynolds numbers are not sufficiently high in the DNS, viscous corrections

are included in comparing the DNS results with the asymptotic Green’s functions for
direct waves. Assuming that the energy dissipation mainly occurs in the free stream
and the observer positions are far enough away so that the plane wave approximation
is valid, a method to correct the viscous dissipation (refer to Pierce 1989, for example)
is reviewed.

Starting with the full Navier–Stokes equations, assume the mean velocity U∞ to be
constant, and neglect all nonlinear terms. Consequently, the non-dimensional form of
the second-order convective wave equation retaining the viscous and heat conduction
terms can be written as

D2Π

Dt2
− ∂2Π

∂x2
j

=
M∞
Re

(
4

3
+
γ − 1

Pr

)
D3Π

Dt3
, (D 1)

where M∞ ≡ U∞/a∞, Re ≡ U∞λ/ν∞, and Pr ≡ µ∞Cp/κ∞. Here, the right-hand
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side is implicitly assumed one order smaller; hence, all dependent variables satisfy
D2f/Dt2−∂2f/∂x2

j = 0 at the leading order. Now, decompose the dependent variable

into the Fourier modes; namely, Π ∼ exp[−iω(t− k̄xx− k̄yy)]. Equation (D 1) can be
then expressed by

−(1− k̄xM∞)2 + k̄2
x + k̄2

y = iενω(1− k̄xM∞)3. (D 2)

Here

εν ≡ M∞
Re

(
4

3
+
γ − 1

Pr

)
,

where εν � 1. By asymptotically solving this dispersion equation, the following solu-
tion can be found:

k̄x ≈
−M∞ ±

√
1− (1−M2∞)k̄2

y

1−M2∞
± i

εν

4

ω(1− k̄xM∞)3√
1− (1−M2∞)k̄2

y

(x R 0) (D 3a)

k̄y ≈
√

(1− k̄xM∞)2 − k̄2
x + i

εν

4

ω(1− k̄xM∞)3√
(1− k̄xM∞)2 − k̄2

x

. (D 3b)

One can see that the second terms of both wavenumbers cause exponential decay,
which contribute to viscous dissipation. Therefore, the pressure amplitude decay can
be expressed by

Π(2)(t, x, y) ≈ exp

−ενω2(1− k̄xM∞)3

4

 |x|√
1− (1−M2∞)k̄2

y

+
y

k̄y

G(2)(x, y) e−iωt.

(D 4)
Here, using the expression for the stationary point in (2.8) and comparing it with the

leading order of (D 2), one can derive k̄y ∼ sinφ/

√
1−M2∞ sin2 φ. Thus, the formula

(D 4) is included when Green’s functions for direct waves are evaluated.

Appendix E. Post-processing to extract channelled waves
To calculate normal modes of channelled waves, the following Riccati forms of

the third-order convective wave operator and its adjoint operator were solved by
the standard fourth-order Runge–Kutta scheme based on a steady laminar boundary
layer velocity profile obtained from DNS at x = 0 (see figure 28 for the overall
procedures for the data processing):

dQ

dy
+

(
Q+

2kxdM/dy

ω − kxM
)
Q+ (n2 − k2

x) = 0, (E 1)

and
dQ†

dy
+

(
Q† − 4kxdM/dy

ω − kxM
)
Q† +

(
n2 − k2

x − 3kxd
2M/dy2

ω − kxM
)

= 0, (E 2)

with the boundary conditions given by

Q(0) = 0, Q(∞) = −√n2∞ − k2
x, (E 3)

and

Q†(0) = 3
kx

ω

dM

dy

∣∣∣∣
y=0

, Q†(∞) = −√n2∞ − k2
x, (E 4)
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Solve Lilley’s equation
for eigenmode shape

Solve adjoint-Lilley’s
equation

Take a velocity profile
at x=0 from DNS

Compute inner product
to solve for an

Analytical resultsDNS results

Extrapolate by
least-square method

Inverse Fourier
Transform

Fourier transformed
in the flow direction

Pressure fluctuation
solved by DNS

Interference
mode

Direct waves
(high frequency limit
except Case A)

Subtract

Subtract

Figure 28. Flow chart of the date processing to compare channelled waves between the theoretical
predictions and the DNS results.

where Q(y) = A′(y)/A(y) and Q†(y) = A†′(y)/A†(y). Equations (E 1) and (E 2) were
both integrated from y = 0 and y = ymax to the turning point by a shooting
method, and the wavenumbers kxm were computed by the Newton method. (A similar
procedure was used to compute kxm for diffracted waves using the Newton–Raphson
method.) To calculate the inner products (2.33), the trapezoidal rule (second order)
was used, and the width of the source in the y-direction was taken into account in
the numerical integration.

In the DNS the eigenmode shapes of channelled waves near the wall show some
changes in the x-direction due to the viscous dissipation and the interference with
direct waves in the free-stream (see figure 29). Therefore, to compare the DNS results
with the theoretical predictions, eigenmode shapes were calculated as follows. Refer
to figure 28 for the procedures. (Note that only the low-frequency case, Case A,
was processed by simply taking an average in the x-direction and eliminating the
contribution from direct waves due to the fact that the interference pattern was
longer than the computational domain.) First, the inviscid solutions were considered.
Referring to (2.16), the pressure fluctuation was assumed to be

Ĝ(2)(x|ω, 0, η) =

N∑
m=1

Am(y) cos(ωt− kxmx− αm). (E 5)

Here, Am includes eigenfunctions of direct waves as well as channelled waves. Although
direct waves should have continuous spectrum, it can be approximated by discrete
modes due to the fact that the dominant wavenumber is given by the stationary phase
method, namely (2.8). To take a discrete Fourier transform in time, the following
quantities were computed using the DNS data:

Ĝcos(2) (x, y) ≡ 2

Nft

Nft∑
j=1

cosωtj

N∑
m=1

Am(y) cos(ωtj − kxmx− αm)

≈
N∑
m=1

Am(y) cos(kxmx+ αm), (E 6)



Green’s functions for a source in a boundary layer 171

0 5 10 15–15 –10 –5

0

1

2

–2

–1

p̂

(×10–3)

Sampled

Extrapolated value

Sponge regionSponge region

x /λ

Figure 29. Viscous decay of channelled waves in Case B. Instantaneous pressure profile and its
amplitude taken by the Fourier transform along y = η are shown. The thick solid line within the
sampled interval denotes the original profile, and the thick dashed line denotes the profile excluding
the interference mode. The thin line denotes the least-square approximation after the direct wave
contribution is eliminated. (It is not a straight line in this figure because the line is defined in the
pressure square domain.)

Ĝsin(2)(x, y) ≡ 2

Nft

Nft∑
j=1

sinωtj

N∑
m=1

Am(y) cos(ωtj − kxmx− αm)

≈
N∑
m=1

Am(y) sin(kxmx+ αm). (E 7)

In this study, Nft was chosen to be = 2n, where n ∈ N, and the sample time was set to
be an exact multiple of the period at the forcing frequency with equal time intervals
so that the second equalities of (E 6) and (E 7) were exact. Consequently, the square
of the amplitude field was calculated as

|Ĝ(2)|2 ≡ |Ĝcos(2) |2 + |Ĝsin(2)|2 =

N∑
m=1

A2
m(y)

+

N∑
m1 6=m2

2Am1
(y)Am2

(y) cos[(kxm1
− kxm2

)x+ (αm1
− αm2

)]. (E 8)

Here, the second summation corresponds to the interference part. Among these terms,
it was assumed that the interference between the normal mode of the channelled waves
(with a purely real kx) and that of the direct waves in the free stream is by far the
largest; accordingly, only three terms survive in (E 8): two auto-correlations and one
cross-correlation of the direct waves and the channelled waves. Next, by observing the
distribution of (E 8) at y = η based on the DNS data, an appropriate spatial interval
for sampling was chosen so that the interference mode was distinguished well (see
figure 29). Subsequently, this profile was converted to the wavenumber space by a
discrete Fourier transform in the x-direction, a mode corresponding to the interference
was eliminated, and the date was recovered by an inverse Fourier transform. Assuming
the resultant distribution only retains the auto-correlations of (E 8), the contribution
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from the direct waves was eliminated based on the high-frequency asymptotic formula
(2.14) (only for Case A, the low-frequency asymptotic formula (2.7) was used). Finally,
the eigenmode shapes were extrapolated to x = 0 based on the least-square method
to recover the viscous dissipation. When the amplitude square was evaluated to be
negative; namely the contribution from the direct waves was over-estimated, it was
depicted by • as shown in figure 22. Strictly speaking, direct waves algebraically fall
off, while the viscous dissipation provides exponential decay. But, assuming these
effects to be relatively small, they were linearly approximated. This process was
repeated for each y, and the normal mode shape at x = 0 was calculated.

REFERENCES

Abrahams, I. D. & Kriegsmann, G. A. 1994 Sound radiation and caustic formation from a point
source in a wall shear layer. AIAA J. 32, 1135–1144.

Abramowitz, M. & Stegun, I. 1965 Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Dover.

Ahluwalia, D. S. & Keller, J. B. 1977 Exact and asymptotic representations of the sound field
in a stratified ocean. In Wave Propagation and Underwater Acoustics (ed. J. B. Keller & J. S.
Papadakis). Lecture Notes in Physics, vol. 70, pp. 14–84. Springer.

Anderson, M. J. & Vaidya, P. G. 1991 Thermo-viscous effects on finite amplitude sound propagation
in a rectangular waveguide. J. Acoust. Soc. Am. 90, 1056–1067.

Avila, G. S. S. & Keller, J. B. 1963 The high-frequency asymptotic field of a point source in an
inhomogeneous medium. Commun. Pure Appl. Maths 16, 363–381.

Balsa, T. F. 1976 The far field of high-frequency convected singularities in sheared flows, with an
application to jet-noise prediction. J. Fluid Mech. 74, 193–208.

Beckemeyer, R. J. 1974 Application of an inner expansion method of plane, inviscid, compressible
flow stability studies. J. Fluid Mech. 62, 405–416.

Brekhovskikh, L. & Lysanov, Y. 1982 In Fundamentals of Ocean Acoustics, pp. 109–138. Springer.

Coleman, G. N., Kim, J. & Moser, R. D. 1995 A numerical study of turbulent supersonic
isothermal-wall channel flow. J. Fluid Mech. 305, 159–183.

Curle, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A
231, 505–514.

Durbin, P. A. 1983 High frequency Green’s function for aerodynamic noise in moving media, Part
I: General theory. J. Sound Vib. 91, no. 4, 519–525.

Ffowcs Williams, J. E. & Hall, L. H. 1970 Aerodynamic sound generation by turbulent flow in
the vicinity of a scattering half plane. J. Fluid Mech. 40, 657–670.

Ffowcs Williams, J. E. & Purshouse, M. 1981 A vortex sheet modelling of boundary-layer noise.
J. Fluid Mech. 113, 187–220.

Freund, J. B. 1997 Proposed inflow/outflow boundary condition for direct computation of aerody-
namic sound. AIAA J. 35, 740–742.

Giles, M. B. 1990 Nonreflecting boundary conditions for Euler equation calculations. AIAA J. 28,
2050–2058.

Goldstein, M. E. 1978 Characteristics of the unsteady motion on transversely sheared mean flows.
J. Fluid Mech. 84, 305–329.

Goldstein, M. E. 1982 High frequency sound emission from moving point multipole sources
embedded in arbitrary transversely sheared mean flows. J. Sound Vib. 80, 499–522.

Goldstein, M. E. & Leib, S. J. 2000 Emission of sound from turbulence convected by a parallel
mean flow in the presence of a confining duct. J. Sound Vib. 235, no.1 25–42.

Graham, W. R. 1996 Boundary layer induced noise in aircraft , Part I: The flat plate model. J. Sound
Vib. 192, 101–120.

Howe, M. S. 1979 The role of surface shear stress fluctuations in the generation of boundary layer
noise. J. Sound Vib. 65, 159–164.

Howe, M. S. & Shah, P. L. 1996 Influence of mean flow on boundary layer generated interior noise.
J. Acoust. Soc. Am. 99, 3401–3411.



Green’s functions for a source in a boundary layer 173
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